簡易檢索 / 詳目顯示

研究生: 周芳妃
Fang-Fei Chou
論文名稱: 電化學壓電晶體液體感測器研製與應用
Preparation and Application of Chemical Electrode Piezoelectric Crystal Liquid Sensors
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 184
中文關鍵詞: 電化學電極表面聲波轉能器石英晶體微天平鄰近電場金屬離子碳六十固定化酵素葡萄糖氧化酶膽固醇水解酶
英文關鍵詞: electrochemical electrode, surface acoustic wave, transducer, quartz crystal microbalance, fringing electric field, metal ions, fullerene, immobilized enzyme, glucose oxidase, cholesterol esterase
論文種類: 學術論文
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一套電極/表面聲波元件(ESAW)系統將超高頻波UHF應用於水溶液化學分析。ESAW系統使用ESAW表面聲波元件為ST-cut石英表面聲波感測元件,此系統應用於水中各種離子濃度偵測及葡萄糖水溶液定量工作。ESAW系統優點是製作成本非常低廉,組裝方法非常容易,而且長時間偵測不會發生訊號能量衰弱現象。建構ESAW系統方法是基於干擾ST-cut石英SAW震盪元件石英晶體表面鄰近電場以產生訊號,製作時以長距離導線及同軸線將放置於水溶液中的各種電極連接到石英SAW震盪元件的金屬外殼。ESAW系統偵測的陽離子包含鹼金族、鹼土族及過渡金屬元素。未經前濃縮步驟,此系統直接測得Cu2+離子偵測極限為7.6 ppm,其靈敏度為2.55 × 105 Hz/(mol/L)。此系統偵測空白訊號標準偏差為10 Hz,信度為99.86 %。ESAW系統亦發展做為葡萄糖生化感測器,其以葡萄糖氧化酶(GOD)催化葡萄糖氧化反應。另外,ESAW系統也應用於葡萄糖與過氧化氫混合溶液系統。ESAW葡萄糖生化感測器在低於10-3M葡萄糖溶液中可測得斜率為9.3 × 102 Hz decade−1 (Hz/logM)的檢量線,且其靈敏度高於QCM葡萄糖生化感測器。
    另外,本研究也以AT-cut石英塗佈碳六十C60大環胺醚方式發展QCM微天平之長鏈脂肪酸與膽固醇酯生化感測器。在非離子型界面活性劑的乳化液中以QCM感測器偵測長鏈脂肪酸或膽固醇酯水解產物。進行膽固醇酯水解反應之酵素添加方式包括兩種方式:在待測溶液中加入膽固醇水解酶以及放置碳六十C60固定化膽固醇水解酶濾片。此感測器系統測得膽固醇偵測極限為62 μM,此與目前醫學上光譜分析法偵測極限比較結果是良好的。目前醫學上光譜分析法仍需使用三種酵素反應系統,但本研究研發的膽固醇感測器只需應用使用一種酵素反應系統,再加上碳六十固定化酵素技術,因此大幅降低目前膽固醇定量分析的成本。

    An electrochemical electrode/surface acoustic wave (ESAW) system was developed to explore the possibility of the application of UHF waves, 300–3000MHz for chemical analysis in solution. The ESAW system with a ST-cut surface-acoustic wave (SAW)/quartz transducer was prepared for detection of metal ions and glucose in aqueous solutions. The ESAW system has the advantages of very low cost, easy fabrication and detection without quick energy-loss. The ESAW system was an on-line detection system and it was built-up by the interference on the fringing electric field of the ST-cut SAW quartz resonator. A set of electrodes welded with long-distance wires and coaxial cables was used to contact to the metal shell of the 315MHz SAW quartz resonator. The ESAW system was applied to detect various metal ions, e.g., alkaline metal, alkaline-earth metal and transition-metal ions. Without pre-concentration technique, the detection limit of Cu2+ ion with the ESAW detection system was estimated to be 1.2 × 10−4 mol L-1 (i.e. 7.6 ppm, from an analytical sensitivity of 2.55 × 105 Hz/(mol/L) and the standard deviation of the blank signal of 10 Hz with a confidence level of 99.86 %. The ESAW detection system was also applied as a biosensor for glucose to detect the glucose oxidation reaction by glucose oxidase (GOD) in aqueous solutions. The glucose oxidase (GOD) enzyme-catalyzed system was also studied on the detection of glucose / H2O2 mixture. The glucose ESAW biosensor with glucose oxidase exhibited a linear frequency response to the log concentration of glucose with a slope of approximately 9.3 × 102 Hz decade−1 (Hz/logM). The ESAW detection system also showed a good selectivity and a good detection limit of < 10−3M for glucose in aqueous solution. Furthermore, the ESAW detector showed much more sensitive than QCM crystal sensor for glucose.
    QCM crystal sensors for long-chain fatty acid and the cholesterol ester were also built up by using the AT-cut quartz crystal with fullerene C60-cyptand-22 coating. The QCM crystal sensors detected the long-chain fatty acid and the cholesterol ester concentration in a non-ionic surfactant emulsion solution. The hydrolysis of cholesterol ester was carried out with catalysts of free and fullerene C60-immobilized cholesterol esterase, respectively. The detection limit of cholesterol with the QCM crystal sensors was estimated to be 62 μM in good comparison with the clinical spectroscopic method. The clinical spectroscopic method is a tri-enzyme reactions system with very expensive cost but the QCM cholesterol sensors with fullerene-immobilized cholesterol esterase was a mono-enzyme system with low cost substantially for the quantitative measurement of cholesterol.

    英文摘要 1 中文摘要 3 目錄 5 圗目錄 8 表目錄 11 第一章 緒論 12 1-1 碳六十自組裝薄膜化學 12 1-2 碳六十壓電感測器 19 1-3 表面聲波元件 32 1-4 通訊電磁波輻射與電磁干擾 41 第二章 ESAW系統的建立 49 2-1 前言 49 2-2 實驗部份 53 2-2-1 儀器設計 53 2-2-2 藥品及試劑 59 2-2-3 實驗步驟 59 2-2-3.1 ESAW系統的硬體設計的研發 59 2-2-3.2 偵測電極的製作 59 2-2-3.3 偵測水溶液性質的基本實驗流程 63 2-3 結果與討論 64 2-3-1 ESAW系統的硬體設計 64 2-3-2 建立ESAW系統的硬體參數 71 2-3-2.1 導線長度效應 71 2-3-2.2 電源電壓效應 74 2-3-2.3 電極面積效應 76 2-3-2.4 電極間的距離效應 78 2-3-2.5 電極種類影響 81 2-3-2.6 溶液溫度效應 85 2-3-2.7 溶液介電性質效應 87 第三章 ESAW系統在離子水溶液的感測應用 91 3-1 前言 91 3-2 實驗部份 92 3-2-1 儀器 92 3-2-2 藥品及試劑 92 3-2-3 實驗步驟 93 3-3 結果與討論 94 3-3-1 強電解質水溶液的偵測 94 3-3-1.1 陽離子之偵測 94 3-3-1.2 陰離子之偵測 99 3-3-1.3 離子之偵測極限 101 3-3-1.4 ESAW系統在電解質水溶液中的延伸應用 102 3-3-2 ESAW系統在電解質水溶液中的理論探討 106 3-3-2.1 離子移動率的效應 106 3-3-2.2 不同濃度硝酸鉀水溶液訊號之預測 109 3-3-2.3 ESAW系統在強電解質水溶液中訊號干擾機制 110 第四章 ESAW系統/過氧化氫/葡萄糖感測器 113 4-1 前言 113 4-2 實驗部份 114 4-2-1 儀器 114 4-2-2 藥品及試劑 114 4-2-3 實驗步驟 115 4-3 結果與討論 116 4-3-1 C/Ag-型電極催化H2O2分解反應 116 4-3-2 酵素催化H2O2分解反應 120 4-3-3 ESAW延遲時間和H2O2/葡萄糖濃度之關係 123 4-3-4 葡萄糖水溶液的偵測 126 第五章 碳六十固定化酵素脂肪酸及膽固醇酯壓電感測器 133 5-1 前言 133 5-2 實驗部份 135 5-2-1 儀器 135 5-2-2 藥品及試劑 135 5-2-3 實驗步驟 136 5-2-3.1 C60-Cryptand-22與QCM電極之製備 136 5-2-3.2 QCM偵測系統之設計 137 5-2-3.3 膽固醇酯類的乳化液之配製 141 5-2-3.4 碳六十固定化酵素製作與保存 142 5-3 結果與討論 145 5-3-1 油酸濃度的測定 145 5-3-1.1 非離子型界面活性劑的濃度效應 145 5-3-1.2 QCM電極的C60-Cryptand-22塗佈效應 149 5-3-2 膽固醇酯濃度的測定 154 5-3-3 碳六十固定化膽固醇水解酶的測試實驗 164 第六章 結論 170 參考資料 174 圖1-1 碳六十之反應性 4 圖1-2 碳六十在基材表面形成化學吸附薄膜之方式 5 圖1-3 碳六十在金(Au)表面形成薄膜之自組裝反應 5 圖1-4 在金(Au)表面的碳六十排列方式 6 圖1-5 碳六十在矽氧化物表面形成薄膜之自組裝反應 6 圖1-6 碳六十固定化脂肪酵素濾片的裝置 7 圖1-7 生化感測器的構成與原理 10 圖1-8 生化感測器的生化辨識元與轉換器感測元 11 圖1-9 生化感測器的構成與原理 13 圖1-10 石英壓電晶體生化感測器的硬體設計 18 圖1-11 碳六十—血紅素塗佈於鉭酸鋰表面聲波元件 19 圖1-12 表面聲波壓電晶體生化感測器的硬體設計 19 圖1-13 生化感測器的發展潛能 20 圖1-14 聲波能量與縱深距離之關係 22 圖1-15 幾種常見的表面聲波型態 23 圖1-16 指叉型電極在石英晶片上產生表面聲波 24 圖1-17 表面聲波IDTs電極設計示意圖 26 圖1-18 Rayleigh-SAW與液體接觸示意圖 27 圖1-19 各式感測器中的表面聲波元件 29 圖1-20 電磁波頻譜 31 圖1-21 無線通訊電波範圍 33 圖1-22 導線四周空間的電場輻射方式 36 圖1-23 無所不在的電磁波的干擾現象 36 圖2-1 ESAW系統硬體設計 52 圖2-2 (A) ESAW系統硬體設計示意圖 (B)改裝一套市售的高頻震盪電路板的方式 55 圖2-3 315 MHz表面聲波共振元件 57 圖2-4 表面聲波共振元件的內部結構 58 圖2-5 三種電極的照片 61 圖2-6 去除電極外殼的方法 62 圖2-7 比較剪去SAW元件A腳的干擾效應 65 圖2-8 評估外界環境的阻抗變化 66 圖2-9 研究SAW元件之A接腳與地線間的導線的長度 裝置圖 67 圖2-10 頻率訊號干擾設計 69 圖2-11 ESAW系統的組裝過程的照片 70 圖2-12 金屬銅殼底部及高頻震盪電路板之間的導線長度 效應 73 圖2-13 高頻震盪電路板上的電源電壓效應 75 圖2-14 平板式銅箔電極面積的對靈敏度的效應 77 圖2-15 兩片平板式銅箔電極間距的對靈敏度的效應 79 圖2-16 電極的製作 81 圖2-17 不同安排電極的方式所造成的鄰近電磁場之電力線圖形 83 圖2-18 指叉型電極間隔距離與電磁波電力線穿透表層距離的關係 83 圖2-19 三種電極用來偵測各種濃度之Cu(NO3)2 溶液的訊號 84 圖2-20 ESAW系統在溶液中的溫度效應 86 圖2-21 溶液的介電性質效應 88 圖2-22 S-型偵測電極之水溶性醇類效應 89 圖2-23 Q-型偵測電極偵測各種濃度之乙醇和甘油溶液的 訊號 90 圗3-1 ESAW系統偵測鹼金族與銨根之硝酸鹽水溶液的訊號變化 96 圗3-2 ESAW系統偵測鹼土族之硝酸鹽水溶液的訊號變化 97 圗3-3 ESAW系統偵測一些過渡金屬之硝酸鹽水溶液的訊號變化 98 圗3-4 ESAW系統偵測一些鉀鹽水溶液的濃度效應 100 圗3-5 ESAW系統以C-型電極測量弱酸—弱鹼滴定。 103 圗3-6 ESAW系統C-型電極兩電極間的填充物對於頻率 訊號的影響 105 圗3-7 (ΔF/ C )值對(μ×q)的作圖 108 圗3-8 (A)水分子形成排列狀態與恢復散亂狀態的示意圖。 (B) ESAW系統中電極的315 MHz電磁波脈衝示意圖 112 圖4-1 ESAW系統之C/Ag型電極在過氧化氫水溶液中 的頻率訊號 118 圗4-2 ESAW系統C/Ag型電極兩電極間的填充物對於 過氧化氫水溶液頻率訊號的影響 119 圗4-3 不同醣類對GOD催化H2O2分解反應的影響 122 圖4-4 H2O2濃度對GOD催化H2O2分解反應延遲時間的 影響 124 圖4-5 葡萄糖濃度對GOD催化H2O2分解反應延遲時間 的影響 125 圗4-6 ESAW系統在1 mM葡萄糖水溶液中偵測的頻率 訊號 128 圗4-7 ESAW系統在葡萄糖與半乳糖水溶液中偵測的頻率訊號 129 圗4-8 ESAW系統搭配葡萄糖氧化酶所測得的葡萄糖濃度效應 131 圗4-9 ESAW生化感測器偵測葡萄糖氧化酶的濃度效應 132 圖5-1 QCM偵測系統硬體設計之示意圖 138 圖5-2 裝設QCM偵測系統的基本流程 139 圖5-3 實驗裝置中放置QCM電極及待測溶液的方法 140 圖5-4 製作C60-膽固醇水解酶固定化酵素的裝置 144 圖5-5 QCM偵測系統在油酸/非離子型界面活性劑NS 乳化液中的頻率訊號 147 圖5-6 油酸乳化液頻率訊號變化的非離子型界面活性劑 濃度效應 148 圖5-7 石英壓電晶片電極之C60-Cryptand-22塗佈效應 151 圖5-8 油酸的頻率感應檢量線 153 圖5-9 非離子型界面活性劑的對照組空白實驗 155 圖5-10 非離子型界面活性劑與膽固醇混合物的對照組空白實驗 156 圖5-11 非離子型界面活性劑與膽固醇水解酶混合物的對照組空白實驗 157 圖5-12 QCM偵測系統在膽固醇水解酶催化下的頻率訊號 159 圖5-13 油酸膽固醇酯的檢量線 162 圖5-14 偵測油酸膽固醇酯水解後的訊號與直接測定油酸的訊號比較 163 圖5-15 QCM電極塗佈C60吸附膽固醇水解酵素的頻率訊號 165 圖5-16 QCM偵測系統在膽固醇水解酶催化下的頻率訊號 167 圖5-17 C60固定化膽固醇水解酶濾片的活性期 168 圖5-18 油酸膽固醇酯的檢量線(固定化酵素) 169 表1-1 碳六十在不同溶劑中溶解度 2 表1-2 電化學與光學檢測法之比較 14 表1-3 常用之壓電基材的物理性質 26 表1-4 各種電磁波輻射所構成的雜訊來源 37 表2-1 所用C-型電極規格 76 表3-1 金屬陽離子的半徑 95 表3-2 陰離子的半徑 99 表3-3 ESAW 系統在離子水溶液中的偵測極限 102 表3-4 離子在無限稀釋水溶液中的移動率 106 表3-5 一些離子的性質 107 表3-6 KNO3水溶液濃度10-3 ~10-2 M範圍內的訊號變化 110

    1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162
    2. R. Taylor, J. P. Hare, A. K. Abdul-Sada, H. W. Kroto, Isolation, Separation and Characterisation of the Fullerenes C60 and C70: The Third Form of Carbon. J. Chem. Soc. Chem. Commun. (1990) 1423
    3. R. Taylor, D. R. M. Walton, The chemistry of fullerenes, Nature 363 (1993) 685
    4. R. E. Haufler, et al., Efficient Production of C60 (Buckminsterfullerene), C60H36, and the Solvated Buckide Ion, J. Phys. Chem. 94, 8634 (1990).
    5. A. Hirsch, The Chemistry of the Fullerenes: An Overview, Angew. Chem. Inter. Ed. Engl. 32 (1993) 1138
    6. W. Kratschmer, L.D. Lamb, K. Fostiropoaulos, D. R. Huffman, Solid C60: a new form of carbon, Nature 347 (1990) 354
    7. W. A. Scrivens, P. V. Bedworth, J. M. Tour, Purification of gram quantities of C60. A new inexpensive and facile method, J. Am. Chem. Soc. 114(1992) 7917
    8. 郭培龍, 鄭建鴻, 碳簇的無機化學, Chin. Chem. 52 (1994) 1
    9. 許龍麟, 碳簇之有機化學反應, Chin. Chem. 52 (1994) 43
    10. 王文竹, 邱浩席, 碳簇的電化學研究, Chin. Chem. 52 (1994) 61
    11. D. M. Guldi, Fullerenes: Three dimensional electron acceptor materials Chem. Commun. (2000) 321.
    12. J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren, F. J. Hollander, Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework, Science 252 (1991) 312
    13. R. D. Johnson, G. Meijer, D. S. Bethune, C60 has icosahedral symmetry, J. Am. Chem. Soc. 112 (1990) 8983
    14. M. J. Rosseinsky, Recent Developments in the Chemistry and Physics of Metal Fullerides Chem. Mater. 10 (1998) 2665
    15. P. Innocenzi, G. Brusatin, Fullerene-Based Organic-Inorganic Nanocomposites and Their Applications, Chem. Mater. 13 (2001) 3126
    16. C. A. Mirkin, W. B. Caldwell, The self-assembly of [60] fullerene substituted 2,2 bipyridine on the surface of Au(111) and Au nanoparticles, Tetrahedron 14 (1996) 5113
    17. E. I. Altman, R. J. Colton, Determination of the orientation of C60 adsorbed on Au(111) and Ag(111), Surf. Sci. 295 (1993) 13
    18. J. K. Gimzewski, S. Modesti, R. R. Schlittler, Cooperative self-assembly of Au atoms and C60 on Au(110) surfaces, Phys. Rev. Lett. 72 (1994) 1036
    19. Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, R. E. Smalley. Adsorption of individual C60 molecules on Si(111), Phys. Rev. B 45 (1992) 13837
    20. C. A. Mirkin, W. B. Caldwell, Thin Film, Fullerene-Based Materials, Tetrahedron 52 (1996) 5113
    21. W. B. Caldwell, K. Chen, C. A. Mirkin, S. J. Babinec, Self-assembled monolayer films of fullerene C60 on cysteamine modified gold, Langmuir 9 (1993) 1945
    22. S. Y. Choi, Y. J. Lee, Y. S. Park, K. Ha, K. B. Yoon, Monolayer Assembly of Zeolite Crystals on Glass with Fullerene as the Covalent Linker, J. Am. Chem. Soc. 122 (2000) 5201
    23. B. Dunn, J. I. Zink, Molecules in Glass: Probes, Ordered Assemblies, and Functional Materials, Acc. Chem. Res. 40 (2007) 747
    24. D. Vaknin, J. Y. Wang, R. A. Uphaussl, C6o-propylamine Adduct Monolayers at the Air-Water Interface, Langmuir 11 (1996) 1435
    25. K. Chen, W. B. Caldwell, C. A. Mirkin, Fullerene Self Assembly onto (MeO)3 (CH2)3NH2 Modified Oxide Surfaces, J. Am. Chem. Soc. 115 (1993) 1193
    26. C. F. Richardson, D. I. Schuster, S. R. Wilson, Synthesis and Characterization of Water-Soluble Amino Fullerene Derivatives, Org. Lett. 2 (2000) 1011
    27. H. Isobe, N. Tomita, E. Nakamura, One-Step Multiple Addition of Amine to [60]Fullerene. Synthesis of Tetra(amino)fullerene Epoxide under Photochemical Aerobic Conditions, Org. Lett. 2 (2000) 3663
    28. C. H. Chen, H. W. Chang, J. S. Shih, Optical Isomer Piezoelectric Crystal Sensor for L-Amino Acid Esters Based on Immobilized C60-Lipase Enzyme Sens. Actuators B, 123 (2007) 1025
    29. 施正雄, 壓電晶體化學感測器開發與應用, 科儀新知, 21 (2000) 60
    30. 張景裕, 張獻彰, 微奈米生物感測器系統在生物醫學的應用, 科儀新知, 28 (2006) 17
    31. S. Subrahmanyam, S. A. Piletsky, A. P. F. Turner, Application of Natural Receptors in Sensors and Assays, Anal. Chem. 74 (2002) 3942
    32. M. Hartmann, Ordered Mesoporous Materials for Bioadsorption and Biocatalysis Chem. Mater. 17 (2005) 4577
    33. K. A. Marx, Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface Biomacromolecules, 4 (2003) 1099
    34. H. Yi, L.-Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver, G. F. Payne, Biofabrication with Chitosan Biomacromolecules 6 (2005) 2881
    35. A. Walcarius, Electrochemical Applications of Silica-Based Organic-Inorganic Hybrid Materials, Chem. Mater. 13 (2001) 3351
    36. A. J. Doerr, G. L. McLendon, Design, Folding, and Activities of Metal-Assembled Coiled Coil Proteins, Inorg. Chem. 43 (2004) 7916
    37. Z. Lin, C. M. Yip, I. S. Joseph, M. D. Ward, Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids, Anal. Chem. 65(1993) 1546
    38. S. Bruckenstein, M. Shay, Experimental Aspects of Using Quartz Crystal Microbalance in Solution, Electrochim. Acta. 30 (1985) 1295
    39. K. K. Kanazawa, J. G. Gordon, The oscillation frequency of a quartz resonator in contact with liquid, Anal. Chim. Acta. 175 (1985) 99
    40. H. C. Lu, H. M. Chen, Y. S. Lin, J. W. Lin, A resuable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay, Biotech. Prog. 16 (2000) 116
    41. A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital Sensors and Transducers, Proc. IEEE. 92 (2004) 808
    42. J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, Microsensors MEMS and Smart Devices, John Willey and Sons, England, 2001, p 303
    43. A. Leidl, R. Hartinger, M. Roth, E. Endres, A new SO2 sensor system with SAW and IDC elements, Sens. Actuators B 34 (1996) 339
    44. H. B. Lin, J. S. Shih, Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors, Sens. Actuators B 92 (2003) 243
    45. R. M. White, F. W. Voltmer, Direct piezoelectric coupling to surface acoustic waves, Appl. Phys. Lett. 7 (1965) 314
    46. D. P. Morgan, Surface acoustic wave devices and applications, Ultrasonics 11 (1973) 121
    47. M. F. Lewis, Surface acoustic wave devices and applications. VI. Oscillators—The next successful surface acoustic wave device, Ultrasonics 12 (1974) 115
    48. J. J. Whiting, C. J. Lu, E. T. Zellers, R. D. Sacks, A Portable, High-Speed, Vacuum-Outlet GC Vapor Analyzer Employing Air as Carrier Gas and Surface Acoustic Wave Detection, Anal. Chem. 73 (2001) 4668
    49. B. A. Auld, Acoustic Fields and Waves in Solids, Krieger, 2th Ed., Florida, 1990, p. 163
    50. H. Wohltjen, Mechanism of Operation and Design Considerations and Design Considerations for Surface Acoustic Wave Device Vapor Sensors, Sens. Actuators B 5 (1984) 307
    51. H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description, Anal. Chem. 51 (1979) 1458
    52. H. Wohltjen, R. Dessy, Surface acoustic wave probe for chemical analysis. II. Gas chromatography detector, Anal. Chem. 51 (1979) 1465
    53. D. Q. Li, M. Ma, Surface acoustic wave microsensors based on cyclodextrin coatings, Sens. Actuators B 69 (2000) 75
    54. J. Wagner, J. M. von Schickfus, Inductively coupled, polymer coated surface acoustic wave sensor for organic vapors, Sens. Actuators B 76 (2001) 58
    55. H. P. Hsu, J. S. Shih, Surface acoustic wave olefin/alkyne sensor based on Ag(I)/cryptand—22, Sens. Actuators B 114 (2006) 720
    56. N. Y. Pan and J. S. Shih, Piezoelectric Crystal IgG Immunosensor Based on Fullerene Immobilized C60-Anti human IgG, Sens. Actuators B 98 (2004) 180
    57. C. W. Chuang and J. S. Shih, Preparation and Application of Immobilized Glucose Oxidase Enzyme in Fullerene C60-Coated Piezoelectric Quartz Crystal Glucose Sensor, Sens. Actuators B 81 (2001) 1
    58. H. W. Chang, J. S. Shih, Surface acoustic wave immunosensors based on immobilized C60-proteins.Sens. Actuators B 121 (2007) 522
    59. S. P. Mohanty, E. Kougianos, Biosensors: a tutorial review, Potentials, IEEE. 25 (2006) 35
    60. R. M. White, F. W. Voltmer, Direct piezoelectric coupling to surface elastic waves, Appl. Phys. Lett. 7 (1965) 314
    61. D. Morgan, Surface wave device for signal processing, Amsterdam, (1991) 152
    62. G. S. Calabrese, H. Wohltjen, M. K. Roy, A Study of SAW Delay Line Behavior in Liquids, Proc. IEEE. Ultrason. Symp. (1986) 607
    63. S. J. Martin, A. J. Ricco, T. M. Niemczyk, G. C. Frye, Characterisation of SH acoustic plate mode liquid sensors, Sens. Actuators B 20 (1989) 253
    64. R. Dahint, M. Grunze, F. Josse, J. Renken, Acoustic plate mode sensor for immunochemical reactions Anal. Chem. 66 (1994) 2888
    65. S. S. Shiokawa, J. Kondoh, Surface acoustic wave sensor for liquid–phase application, Proc. IEEE. Ultrason. Symp. (1999) 445
    66. T. Nomura, A. Saitoh, Y. Horikoshi, Measurement of acoustic properties of liquid using liquid flow SH–SAW sensor system, Sens. Actuators B 76 (2001) 69
    67. J. Kondoh, T. Muramatsu, T. Nakanishi, Y. Matsui, S. Shiokawa, Development of practical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea, Sens. Actuators B 92 (2003) 191
    68. S. W. Wenzel and R. M. White, Flexural plate wave sensor: chemical vapor sensing and electrostrictive excitation, Proc. IEEE. Ultrason. Symp. (1989) 595
    69. Y. T. Shen, C. L. Huang, R. Chen ,L. Wu, A novel SH-SAW sensor system, Sens. Actuators B 107 (2005) 283
    70. 何中庸, 高頻電路設計基礎, 全華科技圖書公司, 中華民國, 2001
    71. 袁帝文, 王岳華, 謝孟翰, 王弘毅, 高頻通訊電路設計, 高立圖書公司, 中華民國, 2000
    72. 袁杰, 無線電通訊技術, 全華科技圖書公司, 中華民國, 2002
    73. 方志行, 陳淑貞, 淺談電磁干擾, 全華科技圖書, 中華民國, 1993
    74. 林國榮, 電磁干擾及控制, 全華科技圖書, 中華民國, 2002
    75. 廖財昌, 雜訊防治對策入門, 全華科技圖書, 中華民國, 2002
    76. 白中和, 電子電路雜訊對策, 全華科技圖書, 中華民國, 1998
    77. G. S. Calabrese, H. Wolhtjen, M. K. Roy, Surface Acoustic Wave Devices as Chemical Sensors in Liquids. Evidence Disputing the Importance of Rayleigh Wave Propagation, Anal. Chem. 59 (1987) 833
    78. D. Liu, K. Ge, K. Chen, L. Nie, S. Yao, Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds, Analytica Chimica Acta. 307 (1995) 61
    79. D. Liu, Y. Lai, L. Nie, S. Yao, Rapid detection of L-glutamic acid using a series-electrode piezoelectric quartz crystal sensor, Analytica Chimica Acta. 313 (1995) 229
    80. Z. Li, Y. Jones, J. Hossenlopp, R. Cernosek, F. Josse, Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors, Anal. Chem. 77 (2005) 4595
    81. http://www.webelements.com/
    82. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2003.
    83. F. Bard, Electrochemical Methods: Fundamentals and Applications, John Willey and Sons, USA, 2001, p 68.
    84. 田福助, 電化學—理論與應用, 新科技書局, 中華民國, 2000, p 30
    85. L. A. Currie, Detection in Analytical Chemistry, ACS Press, Washington DC, 1988, p. 78.
    86. G. L. Long, J. D. Winefordner, Limit of detection: a closer look at the IUPAC definition, Anal. Chem. 55 (1983) 712A-714A.
    87. Ting, R.Y. A review on the development of piezoelectric composites for underwater acoustic transducer applications, IMTC-91. Conference Record., 8th IEEE. (1991) 410
    88. M. P. Spencer, Decompression limits for compressed air determined by ultrasonically detected blood bubbles, J Appl Physiol 40 (1976) 229
    89. Hatteland K, Semb BK. Gas bubble detection in fluid lines by means of pulsed Doppler ultrasound, Scand J Thorac Cardiovasc Surg. 19(1985) 119
    90. Jerry Namery, Ultrasonic bubble detector, U.S. Classification: Patent number: 3974681 (1976)
    91. Leonard N. Liebermann, Sightless bubble detector, U.S. Classification: Patent number: 4138879 (1979)
    92. Thomas Scheller, Werner Heinze, Johann Schreyer, Roman Wysotzky, Ultrasonic sensor for the detection of gas bubbles, U.S. Classification: Patent number: 4722224 (1988)
    93. K.W. Commander, A. Prosperetti, Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Am. 85 (1989) 732
    94. Duraiswami, Ramani, Bubble counting using an inverse acoustic scattering method, J. Acoust. Soc. Am. 104 (1998) 2699
    95. M. Gulsch, B. Henning, Bubble Detection and Gas Volume Measurement in Bubble Loaded Liquids with Pulse Driven Measurement Devices, IEEE. Ultrason. Symp. (2005) 780
    96. E. Wernimont, M. Ventura, G. Garboden, P. Mullens, Past and Present Uses of Rocket Grade Hydrogen Peroxide, Internet site: Jan, 2008
    97. B. R. Petigara, N. V. Blough, A. C. Mignerey, Mechanisms of Hydrogen Peroxide Decomposition in Soils, Environ. Sci. Technol. 36 (2002) 639
    98. G. R. Moran, K. R. Jeffrey, J. M . Thomas and J. R. Stevens, A dielectric analysis of liquid and glassy solid glucose/water solutions., Carbohydrate Research 328 (2000) 573
    99. T. R. Noel, R. Parker and S. G. Ring, A comparative study of the dielectric relaxation behavior of glucose, maltose, and their mixtures with water in the liquid and glassy states, Carbohydrate Research 282 (1996) 193
    100. A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions III: a combined nuclear magnetic and dielectric-relaxation strategy, Journal of Solution Chemistry 5 (1976) 33
    101. X. Liao, G. S. V. Raghavan, J. Dai and V. A. Yaylayan, Dielectric properties of α-D-glucose aqueous solutions at 2450 MHz, Food Research International, 36 (2003) 485
    102. A. Mashimo, M. Nobuhiro and U. Toshihiro, The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L-ascorbic acid, J. Phys. Chem. 97 (1992) 6759
    103. T. N. Tulasidas, G. S. V. Raghavan, F. van de Voort and R. Girard, Dielectric properties of grapes and sugar solutions at 2.45 GHz, Journal of Microwave Power and Electromagnetic Energy 30 (1995) 117
    104. P.J. Lamas-Adisana, A. Costa-Garcia , Behaviour of the series resonant frequency in electrolyte solutions, Sens. Actuators B 115 (2006) 567
    105. L. Michaelis, M. L. Menten, Kinetics of invertase action, Biochem. Z. 49 (1913) 333
    106. M. S. Chang, J. S. Shih, Fullerene-Cryptand Coated Piezoelectric Crystal Membrane Glucose Enzyme Sensor, Sens. Actuators B 67 (2000) 275
    107. L. F. Wei, J. S. Shih, Fullerene-Cryptand coated Piezoelectric Crystal Urea Sensor Based on Urease, Anal. Chim. Acta. 437 (2001) 77
    108. 廖窈萱, 碳六十固定化免疫蛋白質石英壓電感測器的研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2003
    109. 吳佳容, 多頻道人體免疫抗體石英壓電趕測器的研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2005
    110. 洪銘聰, 多頻道碳六十固定化酵素石英壓電生化感測器之研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2005
    111. 蕭智新, 雙頻道葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2005
    112. 張佑潁, 葡萄糖/尿素碳六十固定化酵素選擇性電極之研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2003
    113. 錢培宜, 碳六十脂肪酵素/三酸甘油酯壓電晶體感測器研製與應用, 碩士論文, 國立台灣師範大學化學研究所, 2006
    114. National Cholesterol Education Program, Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. The Expert Panel, Arch. Intern. Med. 148 (1988) 36
    115. C. C. Allain, L. S. Poon, C. S. G. Chan, W. Richmond, P. C. Fu, Enzymatic Determination of Total Serum Cholesterol, Clin. Chem. 20 (1974) 470
    116. Sigma-Aldrich藥廠:C9281 - Datasheet
    117. Sigma-Aldrich藥廠:C9281 - Enzyme Assay
    118. R. Taylor, J. P. Parsons, A. G. Avent, J. P. Rannard, T. J. Dennis, J. P. Hare, H. W. Kroto, D. R. M. Walton, Degradation of C60 by light, Nature 351 (1991) 277
    119. R. Taylor, D. R. M. Walton, The chemistry of fullerenes, Nature 351 (1991) 277
    120. 施正雄, 壓電晶體化學感測器開發與應用, 科儀新知, 21 (2000) 60
    121. K. M. Creegan, J. L. Robbins, W. K. Robbins, J. M. Millar, R. D. Sherwood, P. J. Tindall, D. M. Cox, J. P. McCauley, Jr. D. R. Jones, et al, Synthesis and characterization of C60O, the first fullerene epoxide, J. Am. Chem. Soc. 114 (1992) 1103
    122. A. Hirsch, The chemistry of the fullerenes: an overview, Angew. Chem. Int. Ed. Engl. 32 (1993) 1138
    123. J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren, F. J. Hollander, Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework, Science 12 (1991) 312
    124. J. Li, A. Takeuchi, M. Ozawa, X. Li, K. Saigo, K. Kitazawa, C60 fullerol formation catalysed by quaternary ammonium hydroxides, J. Chem. Soc. Chem. Commun. (1993) 1784
    125. S. Y. Choi, Y. J. Lee, Y. S. Park, K. Ha, K. B. Yoon, Monolayer Assembly of Zeolite Crystals on Glass with Fullerene as the Covalent Linker, J. Am. Chem. Soc. 122 (2000) 5201
    126. S. P. Martin, D. J. Lamb, J. M. Lynch and S. M. Reddy, Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor, Analytica Chim. Acta. 487 (2003) 91
    127. T. Nakaminami, S.-i. Ito, S. Kuwabata, H. Yoneyama, Amperometric Determination of Total Cholesterol at Gold Electrodes Covalently Modified with Cholesterol Oxidase and Cholesterol Esterase with Use of Thionin as an Electron Mediator, Anal. Chem. 71 (1999) 1068
    128. M. A. T. Gilmartin, J. P. Hart, Fabrication and characterization of a screen-printed, disposable, amperometric cholesterol biosensor, The Analyst 119 (1994) 2331

    無法下載圖示 本全文未授權公開
    QR CODE