研究生: |
尤俊國 Chun-Kuo Yu |
---|---|
論文名稱: |
以適應特徵選擇與支持向量機實現心電圖辨識系統 lectrocardiogram Analysis with Adaptive Feature Selection and Support Vector Machines |
指導教授: |
高文忠
Kao, Wen-Chung 黃奇武 Huang, Chi-Wu |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 心電圖 、小波轉換 、支持向量機 |
英文關鍵詞: | ECG, Wavelet Transform, SVM |
論文種類: | 學術論文 |
相關次數: | 點閱:366 下載:33 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心電圖提供了診斷心臟病病和心血管病症的功能,為了能夠及時的監控病人的生理狀態,有時候必須持續長時間且連續的記錄病患所產生的心電圖資料,採用更多的心電圖資訊來判斷波形的物理變化,藉此可以較正確的評估病患目前生理情況,但是通常所得到的心電圖資料必須由專業的醫護人員來解析判讀。
本研究所提出了一個新的心電圖分析演算法,使用小波轉換分析頻帶來擷取心電圖特徵值,包含了改善特徵選擇和分類系統的設計,所擷取出的特徵向量作為心電圖辨識系統中最重要的特徵。而在心電圖辨識系統中較特別的特徵為QRS複合波組,這是含有極高頻的成份且能量較大的峰值波形。在辨識系統中採用支持向量機作為辨別不同種類心臟疾病的分類器。
Electrocardiogram signal (ECG) provides the functional aspects of the heart and cardiovascular system. In order to monitor the real-time evolution of the patients, the ECG signal is sometimes recorded continuously for one or more days. The availability of more and more information on the physical status and evolution of the patient is always desirable, but usually the information needs to be assimilated and evaluated by doctors or nurses.
We propose a new wavelet transform based ECG analysis algorithm with improving the feature extraction and classifier design. Inherited from the properties of WT, the extracted vectors can represent the most important features for ECG signals. It is particularly true for the QRS complex the can be recognized as the high frequency and high energy components. The system adopts support vector machines (SVM) to differentiate the types of heart diseases.
參 考 文 獻
[1] C. S. Pattichis, E. Kyriacou, S. Voskarides, M. S. Pattichis, R. Istepanian, and C. N. Schiza, “Wireless telemedicine systems: an overview,” IEEE Antenna’s and Propagation Magazine, vol.44, no.2, pp.143-153, Apr. 2002.
[2] K. Hung and Y. T. Zhang, “Implementation of a WAP-Based telemedicine system for Patient Monitoring,” IEEE Trans. Information Technology in Biomedicine, vol.7, no.2, pp.101-107, June 2003.
[3] G.. Williams, K. Doughty, and D. A. Bradley, “A system approach to achieving CareNet-An integrated and intelligent telecare system,” IEEE Trans. Information Technology in Biomedicine, vol.2, no.1, pp.1-8, Mar. 1998.
[4] A. I. Hernández, F. Mora, G. Villegas, and G. Carrault, “Real-Time ECG transmission via internet for nonclinical applications,” IEEE Trans. Information Technology in Biomedicine, vol.5, no.3, pp.253-257, Sep. 2001.
[5] J. García, I. Martínez, and L. Sörnmo, “Remote processing server for ECG-Based clinical diagnosis support,” IEEE Trans. Information Technology in Biomedicine, vol.6, no.4, pp.277-284, Dec. 2002.
[6] G. Nora, 臨床心電圖學, 廖述朗編譯, 藝軒圖書出版社, 1996.
[7] M. S. Thaler, 心電圖學必備, 呂嘉陞編譯, 合記圖書出版社, 2002.
[8] M. L. Hilton, “Wavelet and wavelet packet compression of electrocardiograms,” IEEE Trans. Biomedical Engineering, vol.44, no.5, pp.394-402, May 1997.
[9] S. G. Miaou, H. L. Yen, and C. L. Lin, “Wavelet-based ECG compression using dynamic vector quantization with tree code vectors in single codebook,” IEEE Trans. Biomedical Engineering, vol.49, no.7, pp.233-239, July 2002.
[10] B. A. Rajoub, “An efficient coding algorithm for the compression of ECG signals using the wavelet transform,” IEEE Trans. Biomedical Engineering, vol.49 , pp.355-362, Apr. 2002.
[11] M. A. Zahhad, and B. A. Rajoub, “An effective coding technique for the compression of one-dimensional signals using wavelet transforms,” Medical Engineering Physics, vol.24, pp.185-199, 2002.
[12] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, Chin-Ming Hong, and Sheng-Yuan Lin, “Portable real-time homecare system design with digital camera platform,” IEEE Trans. Consumer Electronics, vol.51, no.4, pp.1035-1041, Nov. 2005.
[13] Wen-Chung Kao, Wei-Hsin Chen, Chun-Kuo Yu, and Sheng-Yuan Lin, “A real-time system for portable homecare applications,” in Proc. IEEE International Sym. Consumer Electronics (ISCE), pp.369-374, Jun, 2005, Macau, 2005.
[14] Wen-Chung Kao, Chung-Kuo Yu, Wei-Hsin Chen, Chia-Ping Shen, and Yen-Wei Hung, “Automatic electrocardiogram recognition by wavelet transform and support vector machine,” 2005 CACS Automatic Control Conference, Taiwan, Nov. 2005.
[15] E. J. Claccio, S.M. Dunn, and M. Akay, “Biosignal pattern recognition and interpretation systems. .Methods of classification,” IEEE engineering in Medicine and Biology Magazine, vol.13, pp.129-135, 1994.
[16] Cui-Wei Li, Chong-Gxun Zeng, and Chang-Feng Tai, “Detection of ECG characteristic points using wavelet transform,” IEEE Trans. Biomedical Engineering, vol.42, no.1, pp.21-28, Jan. 1995.
[17] P. Ranjith, P. C. Baby, and P. Joseph, “ECG analysis using wavele transform : application to myocardial ischemia detection,” ITBM-RBM, vol. 24, pp. 44-47, 2003.
[18] Ì. Güler, and E. Übeyli, “ECG beat classifier designed by combined neural network model,” Pattern Recogniton, vol.38, pp.199-208, 2005.
[19] J. Martínez, R. Akneuda, S. Olmos, A. Paula, and P. Laguna, “A Wavelet-Based ECG delineator: evaluation on standard databases” IEEE Tran. Biomedical Engineering, vol.51, no.4, pp.570-581, Apr. 2004.
[20] S. Osowski, L. T. Haoi, and Markiewicz, “Support vector machine-based expert system for reliable heartbeat recognition,” IEEE Trans. Biomedical Engineering, vol.51, no.4, pp.582-589, Apr. 2004.
[21] N. Sivannarayana, and D.C. Reddy, “Biorthogonal wavelet transforms for ECG parameters estimation,” Med. Eng. Phy. Vol.21, pp.167-174, 1999.
[22] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol.11, no.7, pp.674-693, July 1989.
[23] C. J. Lin, “A formal analysis of stopping criteria of decomposition methods for support vector machines,” IEEE Trans. Neural Network, vol.13, no.5, pp.1045-1052, Sep. 2002.
[24] C. J. Lin, “On the convergence of the decomposition method for support vector machines,” IEEE Trans. Neural Network, vol.12, no.6, pp.1288-1298, Nov. 2001.
[25] J. Pan and W. J. Tompkins, “Real-Time QRS detection algorithm,” IEEE Trans. Biomedical Engineering, vol.BME-33, pp.220-236, Mar. 1985.
[26] J. Lee, K. Jeong, J. Yoon, and M. Lee, “A simple real-time QRS detection algorithm,” IEEE Proc. Biomed. Eng., vol.4, pp.1396 1398, Oct. 1996.
[27] S. Kadambe, R. Murray, and G. Faye, “Wavelet transform-based QRS complex detector,” IEEE Trans. Biomedical Engineering, vol.46, no.7, pp.838-848, July. 1999.
[28] H. A. Dinh, D. K. Kumar, N. D. Pah, and P. Burton, “Wavelet for QRS detection,” in Proc. 23rd Annual EMBS International Conference, pp.1883-1887, Oct. 2001.
[29] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York , 2001.
[30] R. Mark and G. Moody, MIT-BIH Arrhythmia Database Directory, Cambridge, MA:MIT, 1988.
[31] G. B. Moody, and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol.20, no.3, pp.45-50, May-June., 2001.
[32] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol.1, pp.205-220, Apr. 1992.
[33] C. J. Lin, “A formal analysis of stopping criteria of decomposition methods for support vector machines,” IEEE Trans. Neural Network, vol.13, no.5, pp.1045-1052, Sep. 2002.
[34] C. J. Lin, “On the convergence of the decomposition method for support vector machines,” IEEE Trans. Neural Network, vol.12, no.6, pp.1288-1298, Nov. 2001.
[35] K. Minami, H. Nakajima, and T. Toyoshima, “Real-Time discrimination of ventricular tachyarrhythmia with fourier-transform neural network,” IEEE Trans. Biomedical Engineering, vol.46, no.2, pp. 179-185, Feb. 1999.
[36] S. Osowski, and T. H. Linh, “ECG beat recognition using fuzzy hybrid neural network,” IEEE Trans. Biomedical Engineering, vol. 48, no. 11, pp. 1265-1271, Nov. 2001.
[37] Z. D. Yuan, J. Q. Xu and G. P. Li, “Recognition of cardiac patterns based on wavelet analysis,” in Proc. IEEE International Symposium on Intelligent Control, pp. 642-645, 2003.
[38] I. Güler, and E. Übeyli, “Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic change in patients with partial epilepsy using feature extraction,” Expert Systems with Application, vol. 27, pp. 323-330, 2004.
[39] M. Engin, “ECG beat classification using neuro-fuzzy network,” Pattern Recogn. Letters, vol.25, pp.1715-1722, 2004.
[40] I. Güler, and E. Übeyli, “ECG beat classifier designed by combined neural network model,” Pattern Recogn., vol.38, pp.199-208, 2005.
[41] J. Lee, K. Jeong, J. Yoon, and M. Lee, “A simple real-time QRS detection algorithm,” in Proc. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.4, pp.1396-1398, Nov. 1996.
[42] Z. Dokur and T. Olmez, “ECG beat classification by a hybrid neural network,” Comp. Meth. Prog. Biomed., vol.66, pp.167-181, 2001.
[43] T. H. Linh, S. Osowski, and M. Stodolski, “On-Line heart beat recognition using hermite polynomials and neuro-fuzzy network,” IEEE Trans. Instrumentation and measurement, vol.52, no.4, pp.1224-1231, Aug. 2003.
[44] C.W. Hsu and C.J. Lin, “A comparison of methods for multi-class support vector machines,” Nat. Taiwan Univ., Taiwan. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin.
[45] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[46] U. R. Acharya, P. S. Bhat, S. S. Iyengar, A. Rao, and S. Dua, “Classification of heart rate data using artificial neural network and fuzzy equivalence relation,” Pattern Recogn., vol.36, pp.61-68, 2003.