簡易檢索 / 詳目顯示

研究生: 陳浩瑋
Chen, Hao-Wei
論文名稱: 變溫磁粒子頻譜儀於磁流體之諧波及溫度特性之應用與研究
Application and research of variable temperature magnetic particle spectrometer in the harmonic and temperature characteristics of magnetic fluid
指導教授: 廖書賢
Liao, Shu-Hsien
口試委員: 王立民
Wang, Li-Min
陳坤麟
Chen, Kuen Lin
口試日期: 2021/07/16
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 腫瘤熱治療磁性奈米粒子交流磁化率
英文關鍵詞: tumor hyperthermia, magnetic nanoparticles, alternating magnetic susceptibility
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101215
論文種類: 學術論文
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝誌 II 摘要 III Abstract IV 目錄 V 表目錄 VIIII 圖目錄 IX 第一章 緒論 1 1.1磁性奈米粒子 1 1.2磁粒子應用及特性 3 1.2.1 生物相容性 3 1.2.2 生物顯影劑用途 4 1.2.3 磁熱治療 5 1.3磁熱治療的發展現況與困境 7 第二章 實驗原理 8 2.1磁場產生原理 8 2.2磁性材料的磁化特性 10 2.2.1 磁性材料 10 2.2.2 磁化曲線 11 2.2.3 磁化強度與磁化率 13 2.2.4 磁化強度對溫度之關係 15 2.2.5 磁化強度對粒徑之關係 16 2.3訊號量測原理 17 2.4磁性奈米粒子諧波訊號 18 第三章 實驗方法 19 3.1磁粒子頻譜儀系統架構 19 3.1.1 訊號產生之系統 20 3.1.2 訊號接收之系統 24 3.2訊號量測之軟體 27 3.3溫度控制系統 29 3.3.1 隔熱裝置 30 3.3.2 溫控器 32 3.4實驗流程 33 3.4.1磁粒子樣品型號及規格 33 3.4.2樣品進出方式 34 3.4.3數據整理與分析 35 第四章 實驗結果 37 4.1溫控器之溫控能力 37 4.2磁性奈米粒子頻譜特性分析 41 4.2.1不同溫度特性下之磁化頻譜 41 4.2.2不同磁場下諧波溫度特性之磁化頻譜 45 4.2.3不同濃度下諧波溫度特性之磁化頻譜 51 4.3模擬磁性樣品特性與諧波關係 59 第五章 結論 63 參考文獻 66

    [1] Akbarzadeh, A., Samiei, M. & Davaran, S. “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, ” Nanoscale Res Lett 7, no. 144, Feb. 2012.
    [2] Kun-Feng Lee, Chao-Hung Kao, Cheng-Yi Chen, Chi-Min Chau, Hui-Ju Cho, Yuh-Jiuan Lin, “Biomedical Application of Magnetic Nanoparticles:Principles and Current Developments,” 科儀新知第二十八卷第一期 95.8,檢自https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/153/01530610.pdf
    [3] Gleich B, and Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature, vol. 435, no. 7046, 1412-7, Jun 2005.
    [4] Weizenecker J, Borgert J, and Gleich B. “A simulation study on the resolution and sensitivity of magnetic particle imaging,” Phys. Med. Biol, vol. 52, no. 21, p. 6363-74, Nov. 2007.
    [5] Liang ZP, and Lauterbur PC: Principles of Magnetic Resonance Imaging, New York: IEEE, Inc.; 2000.
    [6] Rudolf Hergt, Silvio Dutz, Robert Müller, and Matthias Zeisberger. “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” Journal of Physics: Condensed Matter, vol. 18, no. 38, Sep. 2006
    [7] Hergt R, Dutz S, and Röder M., “Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,” Journal of Physics Condensed Matter, vol. 20, no. 38, p. 385214, Sep. 2008.
    [8] M. M. Lin, D. K. Kim, A. J. El Haj, and J. Dobson, “Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications,” IEEE Transactions on Nanobioscience, vol. 7, no. 4, pp. 298–305, 2008.
    [9] M. Mahmoudi, A. Simchi, M. Imani et al., “A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles,” Colloids and Surfaces B, vol. 75, no. 1, pp. 300–309, 2010.
    [10] S. Hughes, A. J. El Haj, and J. Dobson, “Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels,” Medical Engineering and Physics, vol. 27, no. 9, pp. 754–762, 2005.
    [11] Morteza Mahmoudi, Shilpa Sant, Ben Wang, Sophie Laurent, Tapas Sen,
    “Superparamagnetic iron oxide nanoparticles (SPIONs) :Development, surface modification and applications in chemotherapy, ”Advanced Drug Delivery Reviews,Volume 63, Issues 1–2,2011.
    [12] Hahn, M.A., Singh, A.K., Sharma, P. et al, “Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives,”Anal Bioanal Chem 399, 3–27, Oct. 2011.
    [13] Kung-Shan Cheng, “An Introduction to the Principles of Thermal Therapy for Cancer Using Magnetic Particles in Nanometer Scales”科儀新知;192期,P87 - 96. Feb. 2013
    [14] Jelena Kolosnjaj-Tabi, Claire Wilhelm, “Magnetic nanoparticles in cancer therapy: how can thermal approaches help? ” NANOMEDICINEVOL.12 , NO.6, Feb. 2017
    [15] 蔡禎輝《奈米材料在生醫之應用》工業技術研究院奈米中心,檢自
    http://dlweb01.tzuchi.com.tw/dl/acdactive/content/speeches/video/v111_120/v111_120/v117/0412.pdf, 2005
    [16] Nicolas Garraud, Rohan Dhavalikar, Lorena Maldonado-Camargo,David P.Arnold,and Carlos Rinaldi., “Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics” AIP Advances 7, 056730 .2017.
    [17] Weaver J B, Rauwerdink A M, Sullivan C R, and Baker I, “Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field.” Med. Phys, vol. 35, no. 3, p. 1988–94, May 2008
    [18] Stefaan Vandendriessche, Ward Brullot, Dimitar Slavov, Ventsislav K. Valev, and Thierry Verbiest, “Magneto-optical harmonic susceptometry of superparamagnetic materials.” Appl. Phys. Applied Physics Letters, vol. 102, no. 16, Mar. 2013
    [19] Knobel M1, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, and Denardin JC, “Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems.” J. Nanosci. Nanotechnol, vol. 8, no. 6, Jun 2008.
    [20] 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯。《磁性基本特性及磁性材料應用》國立台灣大學化學系,檢自https://www.ch.ntu.edu.tw/~rsliu/teaching/pdf97/material/5.pdf
    [21] NEIL SMITH, “Reciprocity Principles for Magnetic Recording Theory.” IEEE TRANSACTIONS ON MAGNETICS, vol. MAG-23, no. 4, Jul. 1987.
    [22] Wang, Yuan-Jui, “Erect and Characteristics of Temperature-controllable
    magnetic nanoparticles Spectrometer.” August 2020.

    無法下載圖示 本全文未授權公開
    QR CODE