研究生: |
倪至謙 Ni, Chih-Chien |
---|---|
論文名稱: |
用於高光譜和多光譜影像融合的知識蒸餾師生網路 Knowledge Distillation Teacher-Student Network for Hyperspectral and Multispectral Image Fusion |
指導教授: |
康立威
Kang, Li-Wei 許志仲 Hsu, Chih-Chung |
口試委員: |
康立威
Kang, Li-Wei 許志仲 Hsu, Chih-Chung 李曉祺 Li, Hsiao-Chi |
口試日期: | 2023/07/26 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 高光譜影像 、多光譜影像 、影像融合 、教師學生模型 、知識蒸餾 |
英文關鍵詞: | Hyperspectral Image, Multispectral Image, Image Fusion, Teacher-Student Model, Knowledge Distillation |
研究方法: | 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202301142 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著太空探索的技術進步,太空遙測與感知領域變得越來越熱門。因為高解析度的高光譜影像在光譜帶上擁有更多的訊息,這些訊息對於遙測領域應用有很大的幫助,然而直接獲取高解析度高光譜影像會對硬體造成巨大的負擔。因此替代的方式是取得相同條件下的高解析度多光譜影像與低解析度高光譜影像,藉由此兩種影像的融合來獲得高解析度的高光譜影像。
在本論文中,先是使用成對的高光譜和多光譜影像資料訓練一個較複雜的網路生成高解析度的多光譜影像和低解析度的高光譜影像融合結果,使用具有卷積感受野重複運用的RFRM模塊提取光譜訊息,再與多光譜影像擁有的空間信息融合生成最終結果。接著為了降低網路的大小,引入知識蒸餾的教師–學生架構建構一個小型的學生模型,讓學生模型去學習教師模型的特徵和資料集的訊息,進而達到效能與教師差距不大、但在速度以及模型複雜度上都優於教師模型的多光譜高光譜融合模型。經實驗顯示我們的蒸餾效果在影像融合成效上有很好的結果,並且在運行速度上相較教師網路快了近1.5倍,參數量則減少為原本的0.54倍。
The field of space telemetry and sensing has become more and more popular in recent years with the technological advancement in space exploration. Because high-resolution hyperspectral images have more information in the spectral band, It is very helpful for remote sensing applications. However, direct acquisition of high-resolution hyperspectral images will impose a huge burden on the hardware. Therefore, the alternative is to obtain high-resolution multispectral images and low-resolution hyperspectral images under the same conditions, and get high-resolution hyperspectral images by fusing these two images.
In this paper, we first train a complex network with paired hyperspectral and multispectral image data to generate fusion results of high-resolution multispectral images and low-resolution hyperspectral images. To reduce the size of the network, we introduce a teacher-student framework of knowledge distillation to construct a small student model, and let the student model learn the features of the teacher model and the information of the dataset. Generate a fusion model with performance comparable to the teacher model, but superior in terms of speed and complexity of the model.
AVIRIS Free Standard Data Products. [Online].
Available : http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
Gemine Vivone, “Multispectral and hyperspectral image fusion in remote sensing: A survey, Information Fusion, Volume 89, 2023, Pages 405-417, ISSN 1566-2535
What Is Hyperspectral Imaging, https://www.nireos.com/hyperspectral-imaging/
B. Aiazzi, S. Baronti and M. Selva, "Improving Component Substitution Pansharpening Through Multivariate Regression of MS + Pan Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 3230-3239, Oct. 2007.
S. Li, R. Dian, L. Fang and J. M. Bioucas-Dias, "Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization," in IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 4118-4130, Aug. 2018.
N. Yokoya, T. Yairi and A. Iwasaki, "Coupled non-negative matrix factorization (CNMF) for hyperspectral and multispectral data fusion: Application to pasture classification," 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 2011, pp. 1779-1782.
Y. Zhang, Y. Wang, Y. Liu, C. Zhang, M. He and S. Mei, "Hyperspectral and multispectral image fusion using CNMF with minimum endmember simplex volume and abundance sparsity constraints," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015, pp. 1929-1932.
Zhao, Y., Yang, J., Zhang, Q. et al. Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP J. Adv. Signal Process. 2011, 87 (2011).
B. Huang, H. Song, H. Cui, J. Peng and Z. Xu, "Spatial and Spectral Image Fusion Using Sparse Matrix Factorization," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 3, pp. 1693-1704, March 2014.
Z. H. Nezhad, A. Karami, R. Heylen and P. Scheunders, "Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2377-2389, June 2016.
Y. Zhang, Y. Wang, Y. Liu, C. Zhang, M. He and S. Mei, "Hyperspectral and multispectral image fusion using CNMF with minimum endmember simplex volume and abundance sparsity constraints," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015, pp. 1929-1932.
Matteo Ciotola, Sergio Vitale, Antonio Mazza, Giovanni Poggi, Giuseppe Scarpa, “Pansharpening by convolutional neural networks in the full resolution framework”, arXiv:2111.08334, 2021.
Y. Wei, Q. Yuan, H. Shen and L. Zhang, "Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1795-1799, Oct. 2017.
F. Palsson, J. R. Sveinsson and M. O. Ulfarsson, "Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 639-643, May 2017.
L. Wang, C. Sun, Y. Fu, M. H. Kim and H. Huang, "Hyperspectral Image Reconstruction Using a Deep Spatial-Spectral Prior," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 8024-8033.
Y. Qu, H. Qi, C. Kwan, N. Yokoya and J. Chanussot, "Unsupervised and Unregistered Hyperspectral Image Super-Resolution With Mutual Dirichlet-Net," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022.
Jing Yao, Danfeng Hong, Jocelyn Chanussot, Deyu Meng, Xiaoxiang Zhu, Zongben Xu, “Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution”, in Proc. European Conf. Computer Vision (ECCV), pp. 208–224, 2020.
Z. Zhu, J. Hou, J. Chen, H. Zeng and J. Zhou, "Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning," in IEEE Transactions on Image Processing, vol. 30, pp. 1423-1438, 2021.
W. Wang, W. Zeng, Y. Huang, X. Ding and J. Paisley, "Deep Blind Hyperspectral Image Fusion," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019.
Q. Xie, M. Zhou, Q. Zhao, Z. Xu and D. Meng, "MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1457-1473, 1 March 2022.
W. Dong, T. Zhang, J. Qu, Y. Li and H. Xia, "A Spatial–Spectral Dual-Optimization Model-Driven Deep Network for Hyperspectral and Multispectral Image Fusion," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-16, 2022.
C.-Y. Chi, W.-C. Li, and C.-H. Lin, “Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications”, Boca Raton, FL, USA: CRC Press, 2017.
Stephen Boyd; Neal Parikh; Eric Chu; Borja Peleato; Jonathan Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , now, 2011.
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network”, arXiv:1503.02531, 2015.
Jianping Gou, Baosheng Yu, Stephen John Maybank, Dacheng Tao, “Knowledge Distillation: A Survey”, arXiv:2006.05525, 2020.
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network Hilton NIPS”, arXiv:1503.02531, 2015.
M. Phuong and C. Lampert, "Distillation-Based Training for Multi-Exit Architectures," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 1355-1364.
Sergey Zagoruyko, Nikos Komodakis, “Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer”, arXiv:1612.03928, 2016.
J. Yim, D. Joo, J. Bae and J. Kim, "A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 7130-7138.
C. -C. Hsu, C. -H. Lin, C. -H. Kao and Y. -C. Lin, "DCSN: Deep Compressed Sensing Network for Efficient Hyperspectral Data Transmission of Miniaturized Satellite," in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7773-7789, Sept. 2021.
Wald, Lucien, Ranchin, Thierry, Mangolini, Marc, “Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images”, Photogrammetric Engineering and Remote Sensing. 63. 691-699, 1997.
Diederik P. Kingma, Jimmy Ba, “Adam: A Method for Stochastic Optimization”, arXiv:1412.6980, 2014.
Z. Min, Y. Wang and S. Jia, "Multiscale Spatial-spectral Joint Feature Learning for Multispectral and Hyperspectral Image Fusion," 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, Hainan, China, 2021, pp. 1265-1270
J. Xiao, J. Li, Q. Yuan and L. Zhang, "A Dual-UNet With Multistage Details Injection for Hyperspectral Image Fusion," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2021
T. Huang, W. Dong, J. Wu, L. Li, X. Li and G. Shi, "Deep Hyperspectral Image Fusion Network With Iterative Spatio-Spectral Regularization," in IEEE Transactions on Computational Imaging, vol. 8, pp. 201-214, 2022