研究生: |
黃鈺庭 Yu-Ting Huang |
---|---|
論文名稱: |
以電子結構計算解析Ruthenium Oxyquinolate 在染料敏化太陽能電池上的光電轉換效率 Theoretical Analysis on the Power Conversion Process of a Ruthenium Oxyquinolate Architecture for Dye-Sensitized Solar Cells by Electronic Structure Calculations |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 太陽能染料電池 |
英文關鍵詞: | Dye-Sensitized Solar Cells, non-innocent |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ruthenium結合non-innocent ligands(NILs)錯合物具有非常有趣的electronic properties,已知在benzoquinone、iminobenzoquinone、benzoquinonediimine等系統中以及它們相對應的redox衍生物中均可觀察到這些現象。本篇研究針對[Ru(dcbpy)2(8-OQN)]+ (dcbpy=4, 4'- dicarboxy-2, 2' bipyridyl, and 8-OQN=8-oxyquinolate)這個錯合物進行電子結構的分析,以及其在太陽能染料電池上的應用。本篇論文藉由結合分子軌道理論與密度泛函理論的方式來研究[Ru(dcbpy)2(8-OQN)]+的特性。在考量溶劑效應下,我們計算[Ru(dcbpy)2(8- OQN)]+幾何結構、電子結構和吸收圖譜來探討。我們的結果顯示在吸收圖譜上有強的Ru (dπ) → dcbpy (π*) MLCT的吸收在300-700 nm的範圍內,以及在電子結構中,Ru d(π) 和 8-QON p(π)的軌域是混成在一起的。從研究結果發現,[Ru(dcbpy)2 (8-OQN)]+顯示出和[Ru(dcbpy)2(dfpp)]+ (dfpp=2-(2, 4-Difluororphenyl)pyridine) 及 Ru(dcbpy)2(NCS)2相近氧化還原電位、電子結構和吸收圖譜。我們也加入[Ru(dcbpy)2(5,7-di-X-8-OQN)]+ (X=F, Cl, Br, I, Me)和[Ru(dcbpy)2 (2,4-di-Y-phenyl-pyridine)]+ (Y= F, Cl, Br, I, Me)系列的錯合物做計算,觀察加入推拉電子基對吸收光譜、電子結構和分子軌域的影響。最後藉由[Ru(dcbpy)2(5,7-di-X-8-OQN)]+和[Ru(dcbpy)2 (2,4-di-Y-phenyl-pyridine)]+與電解質模型I-的計算,從軌道能量的觀點上,發現I-無法對[Ru(dcbpy)2(5,7-di-X-8-OQN)]+系列錯合物的HOMO進行還原。
Ruthenium complexes with non-innocent ligand, e.g. benzoquinone、iminobenzoquinone、benzoquinonediimine, exhibit intriguing electronic properties. [Ru(dcbpy)2(8-OQN)]+ (dcbpy = 4, 4'- dicarboxy-2, 2' bipyridyl, and 8-OQN = 8-oxyquinolate) for dye-sensitized solar cells was designed and reported. We report herein a theoretical investigation combinging molecular orbital theory and Density Functional Theory (DFT) on the [Ru(dcbpy)2 (8-OQN)]+. Molecular geometries, electron structures, and optical absorption spectra are predicted in methanol solution. Our results show that [Ru(dcbpy)2(8-OQN)]+ displays Ru (dπ) → dcbpy (π*) metal-to-ligand charge transfer absorption spectra in the range of 300-700 nm and extended molecular orbital overlap due to Ru (dπ) and 8-QON p(π) mixing. [Ru(dcbpy)2(8-OQN)]+ show similar redox potentials, optical properties and electron structures in comparison with [Ru(dcbpy)2(dfpp)]+ (dfpp=2-(2,4-Difluororphenyl) pyridine) and Ru (dcbpy)2(NCS)2 complexes using the optimized structures. Furthermore, a series of [Ru(dcbpy)2(5,7-di-X-8-OQN)]+ (X=F, Cl, Br, Me) Ru-8-OQN_F, Ru-8-OQN_Cl, Ru-8-OQN_Br and Ru-8-OQN_Me and [Ru(dcbpy)2 (2,4-di-Y-phenyl-pyridine)]+ (Y=H, Cl, Br, Me) YE05_H, YE05_Cl, YE05_Br and YE05_Me have been characterized by absorption spectra, electron structures and molecular orbitals. A quantative model of describing electrolyte (I¯ ion) was carried out using molecular orbital theory. The enegetics of the p orbitals of I¯ ions suggests that the electron injection into HOMO of [Ru(dcbpy)2(5,7-di-X- 8-OQN)]+ complexes may not be possible.
(1) Gratzel, M. Nature 2000, 403, 363.
(2) Gratzel, M. Nature 2001, 414, 338.
(3) Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E. Chem. Soc. Rev. 2011, 40, 1635.
(4) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
(5) Gerischer, H.; Tributsch, H. Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 850.
(6) Tributsch, H.; Gerischer, H. Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 251.
(7) H, T.; M, M.; Y, N.; T, A. Nature 1976 261, 402.
(8) Matsumura, M.; Matsudaira, S.; Tsubomura, H. Ind. Eng. Chem. Prod. Res. Dev 1980, 19, 415.
(9) O'Regan, B.; Grazel, M. Nature 1991, 353, 737.
(10) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
(11) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Gratzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Gratzel, M. ACS Nano 2009, 3, 3103.
(12) Boschloo, G.; Hagfeldt, A. Acc. Chem. Res. 2009, 42, 1819.
(13) Tachibana, Y.; Haque, S. A.; Mercer, I. P.; Durrant, J. R.; Klug, D. R. J. Phys. Chem. B 2000, 104, 1198.
(14) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Angew. Chem. Int. Ed. 2006, 45, 5822.
(15) http://www.eyesolarlux.com/Solar-simulation-energy.htm.
(16) Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.
(17) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
(18) Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338.
(19) Kroeze, J. E.; Hirata, N.; Koops, S.; Nazeeruddin, M. K.; Schmidt-Mende, L.; Gratzel, M.; Durrant, J. R. J. Am. Chem. Soc. 2006, 128, 16376.
(20) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 808.
(21) Kuang, B. D.; Klein, C.; Ito, S.; Moser, J.-E.; Humphry-Baker, R.; Evans, N.; Duriaux, F.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M. Adv. Mater. 2007, 19, 1133.
(22) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Xiaoyan Jing; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2008, 130, 10720.
(23) Bessho, T.; Yoneda, E.; Yum, J.-H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2009, 131, 5930.
(24) Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Gratzel, M. Angew. Chem. Int. Ed. 2008, 47, 327.
(25) Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783.
(26) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
(27) Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2008, 130, 9202.
(28) Zhang, G.; Bala, H.; Cheng, Y.; Dong Shi, X. L.; Yu, Q.; Wang, a. P. Chem. Commun. 2009, 2198.
(29) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915.
(30) Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2006, 42, 1809.
(31) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Gratzel, M. J. Phys. Chem. B 2005, 109, 15397.
(32) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y. Chem. Eur. J. 2009, 15, 1403.
(33) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Gratzel, M. Angew. Chem. Int. Ed. 2010, 49, 6646.
(34) Baranoff, E.; Yum, J.-H.; Graetzel, M.; Nazeeruddin, M. K. J. Organomet. Chem. 2009, 694, 2661.
(35) Balzani, V.; Juris, A.; Venturi, M. Chem. Rev. 1996, 96, 759.
(36) Abrahamsson, M.; Jäger, M.; Kumar, R. J.; Österman, T.; Persson, P.; Becker, H.-C.; Johansson, O.; Hammarström, L. J. Am. Chem. Soc. 2008, 130, 15533.
(37) Zhao, H. C.; Harney, J. P.; Huang, Y.-T.; Yum, J.-H.; Nazeeruddin, M. K.; Grätzel, M.; Tsai, M.-K.; Rochford, J. Inorg. Chem. 2011, 51, 1.
(38) Boyer, J. L.; Rochford, J.; Tsai, M.-K.; Muckerman, J. T.; Fujita, E. Coord. Chem. Rev. 2010, 254, 309.
(39) Sears, R. B.; Joyce, L. E.; Turro, C. Photochem. Photobiol. 2010, 86, 1230.
(40) Cramer, C. J. Essentials of Computational Chemistry West Sussex, England ; New York, 2002.
(41) Levine, I. N. Quantum Chemistry; 3th ed. Brooklyn, New York, 1970.
(42) Lewars, E. G. Computational Chemistry Introduction to the Theory and Applications; 2th ed. Peterborough Ontario Canada, 2011.
(43) Lewars, E. Computational Chemistry:Introduction to the Theory and Applications of Molecular and Quantum Mechanics Boston, 2004.
(44) Young, D. Computational Chemistry:A Practical Guide for Applying Techniques to Real World Problems; 2th ed. New York, 2001.
(45) Rode, B. M.; Hofer, T. S.; Kugler, M. D. The Basics of Theoretical and Computational Chemistry Weinheim, 2007.
(46) Parr, R. C.; Yang, W. Annu. Rev. Phys. Chern. 1995, 46, 701.
(47) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(48) Castro, A.; Marques, M. A. L.; Rubio, A. J. Chem. Phys. 2004, 121, 3425.
(49) Leach, A. R. Molecular Modelling:Principles and Applications; 2th ed. Harlow, England, 2001.
(50) Hartree, D. R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
(51) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (52) Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem. 1975, 9, 229.
(53) Shavitt, I. Mol. Phys. 1998, 94, 3.
(54) Crawford, T. D.; III, H. F. S. Rev. Comput. Chem 2000, 14, 33.
(55) Pariser, R.; Parr, R. G. J. Chem. Phys. 1953, 21, 466.
(56) Pariser, R.; Parr, R. G. J. Chem. Phys. 1953, 21, 767.
(57) Pople, J. A. Trans Faraday Soc 1953, 49, 1375.
(58) J. A. Pople , G. A. S. J. Chem. Phys. 1966, 44, 3289.
(59) Baird, N. C.; Dewar, M. J. S. J. Chem. Phys. 1969, 50, 1262.
(60) Bingham, R. C.; Dewar, M. J. S.; LO, D. H. J. Am. Chem. Soc. 1975, 97, 1285.
(61) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899.
(62) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4907.
(63) Dewar, M. J. S.; McKee, M. L. J. Am. Chem. Soc. 1977, 99, 5231.
(64) J. A. Pople , D. L. B., P. A. Dobosh J. Chem. Phys. 1967, 47, 2026.
(65) Dixon, R. N. Mol. Phys. 1967, 12, 83.
(66) Kotzian, M.; Rosch, N.; Zerner, M. C. Theor. Chim. Acta. 1992, 81, 201.
(67) Dewar, M. J. S.; Klopman, G. J. Am. Chem. Soc. 1967, 89, 3089.
(68) Dannenberg, J. J.; Evleth, E. M. Int. J. Quant. Chem. 1992, 44, 869.
(69) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.
(70) Stewart, J. J. P. J. Comp. Chem. 1991, 12, 320.
(71) Stewart, J. J. P. J. Comp. Chem. 1992, 10, 221.
(72) Holder, A. J.; II, R. D. D.; Jie, C. Tetrahedron 1994, 50, 627.
(73) Dewar, M. J. S.; Jie, C.; Yu, J. Tetrahedron 1993, 49, 5003.
(74) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, B864.
(75) Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439.
(76) Ullrich, C. A.; Kohn, W. Phys. Rev. Lett. 2001, 87, 093001.
(77) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(78) Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. J. Chem. Phys. 2005, 123, 062201.
(79) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
(80) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(81) Slater, J. C. Phys. Rev. 1930, 36, 57.
(82) Bouferguene, A.; Fares, M.; Hoggan, P. E. Int. J. Quant. Chem. 1996, 57, 801.
(83) Gill, P. M. W. Adv Quantum Chem 1994, 25, 141.
(84) Boys, S. F. Proc. R. Soc. London. Ser. A 1950, 200, 542.
(85) Gill, P. M. W.; Pople, J. A. Int. J. Quant. Chem. 1991, 40, 753.
(86) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657.
(87) Newton, M. D.; Lathan, W. A.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1969, 51, 3927.
(88) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(89) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358.
(90) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1995, 103, 4572.
(91) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(92) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(93) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(94) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029.
(95) Foresman, J. B. Exploring Chemistry with Electronic Structure Methods; 2th ed. Pittsburgh, 2000.
(96) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision A.1; Gaussian, Inc: Wallingford, CT, 2009.
(97) Scalmania, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. J. Chem. Phys. 2006, 124, 094107.
(98) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997.
(99) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(100) Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Gabriel, S.; Stephens, P. J. J. Phys. Chem. A 2002, 106, 6102.
(101) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104, 2053.
(102) Bastide, S.; Gal, D.; Cahen, D.; Kronik, L. Rev. Sci. Instrum. 1999, 70, 4032.
(103) Hara, K.; Sayama, K.; Arakawa, H. Sol. Energ. Mat. Sol. C. 2000, 62, 441.
(104) Hagfeldt, A.; Graetzel, M. Chem. Rev. 1995, 95, 49.
(105) Baranoff, E.; Curchod, B. F. E.; Monti, F.; Steimer, F.; Accorsi, G.; Tavernelli, I.; Rothlisberger, U.; Scopelliti, R.; Grätzel, M.; Nazeeruddin, M. K. Inorg. Chem. 2011, 51, 799.
(106) Vlcek, A. A.; Dodsworth, E. S.; Pietro, W. J.; Lever, A. B. P. Inorg. Chem. 1995, 34, 1906.
(107) Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360.
(108) Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Mitate, T. Comptes Rendus Chimie 2006, 9, 645.
(109) Wang, Q.; Moser, J.-E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945.
(110) Chen, Y.-H.; Huang, K.-C.; Chen, J.-G.; Vittal, R.; Ho, K.-C. Electrochimica Acta 2011, 56, 7999.