簡易檢索 / 詳目顯示

研究生: 黃志喜
Huang, Chih-hsi
論文名稱: 一維光子晶體缺陷層的單向吸收分析
Analysis of Unidirectional Absorption in a Defective Superconducting Photonic Crystal
指導教授: 張宗文
Chang, Tzeng-Wen
廖書賢
Liao, Shu-Hsien
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 光子晶體超導體負折射材料半導體
英文關鍵詞: Photonic crystal, Superconducting, Negative material, Semiconductor
DOI URL: http://doi.org/10.6345/NTNU202001117
論文種類: 學術論文
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

理論上研究了在一維缺陷超導光子晶體材料裡高頻光波出現單向傳播性質。我們考慮用一種非對稱性的光子晶體其結構為(AB)ND(BA)M排列堆疊而成,其中A層材料為具有介電質的材料,B層材料為超導材料,D層為具有電介質材質的缺陷層,然而N、M為堆疊的數目。在本次研究中發現堆疊層數目不同時 (N ≠ M)該光子晶體結構會造成高頻光波出現單向性傳播性,單向傳播共振吸收頻率位置會隨著堆疊層數目(N和M)之間差距越大而增加。其中我們還研究了入射光波偏振角與單向傳播之間的關係,從此次的研究結果發現,當在改變入射光波的偏振方向的狀況下,單向傳播的吸收率幾乎與偏振方向是沒有直接關係地,因此我們提出的這個光子晶體結構技術可以用於設計出與入射光偏振無關的光學元件。
接下來我們還有從理論計算方式下,研究了一維具有缺陷且不對稱堆疊光子晶體結構上光波傳遞的性質,這次的光子晶體結構為 air /(AB)MG(BA)N/air,air/(AQ)MG(QA)N /air和air/(BQ)MG(QB)N/air,其光子晶體堆疊結構中的A層材料是用具有損耗的負介電係數材料,B層則是用了具有損耗地mu-negative material材料,而G層和Q層是用不同折射率的介電材料,另外該光子晶體的堆疊層數目M和N是不同的(M≠N)。此次的研究中我們注意到了在某些條件下其入射光譜會被吸收,導致傳遞光波的光子晶體有單向傳播特性。還有在這個負折射係數材料中,依造我們的計算結果顯示了有兩種單向吸收峰值,一種是會因缺陷層(G)厚度的改變而導致其鋒值頻率位置也隨著變化,另一種吸收峰值就不會隨著缺陷層的厚度改變而波峰頻率位置有所變化,這種的波峰頻率位置是固定在某些頻率位置上,另外這種固定波譜頻率位置的波峰數目會與正向或者反向傳播有所不同,當正向傳播時其波峰數目會是(M-1)個,然而如果是逆向傳播時波峰數目會是N-1個。特別的是當正向傳播與逆向傳播時固定波譜位置這個波峰數目相同為M − N − 1時,該光子晶體的單向傳播特性將消失。
另外一個研究是從理論上研究了改用材料含有n-InSb半導體層且用stage 3 triadic-Cantor-setphotonic crystal(S3 TCS PC)來討論其傳輸特性,依著半導體(n-InSb)介電常數具有可以將光波共振頻率傳輸響分成三個區域,其三個區域分別為兩個傳輸共振頻率遠高於半導體(n-InSb)介電常數的諧振頻率和另一個低於其材料共振諧振頻率的區域,其中半導體的介電常數幾乎是正常數。在光波進入stage 3 triadic-Cantor-setphotonic crystal(S3 TCS PC)結構中,其結構會將光波分成兩組不同共振頻率區域透射波譜,其為缺陷缺陷模式Np模式和非缺陷模式的Np-1模式,,其中一組波譜可以用堆疊層周期數變化而改變其缺陷模式(Np)的波峰數目,另外還可以改變入射光波的角度也會造成TE波和TM波光譜頻率位置的改變,此外還可以調整每一層的厚度來控制非缺陷層模式(Np–1)頻率響應的位置。但是要注意當入射波譜頻率落在5.1~6.2 THz大小區域時Np模式波峰強度對會損耗很大。

Terahertz unidirectional resonant absorption in a finite one-dimensional defective superconducting photonic crystal is theoretically investigated. We consider an asymmetric photonic crystal (AB)ND(BA)M, where A is a dielectric, B is a superconductor, D is the dielectric defect, and N, M are the stack numbers, respectively. At N≠M, it is found that the resonant absorption for the structure exhibits the unidirectional property. The unidirectional resonant absorption points increase as the difference between N and M increases. We also investigate the unidirectional property as a function of angle of incidence. The results show that the unidirectional absorption is nearly independent of the polarization at a given angle of incidence. The proposed structure can be used to design a polarization-independent optical device which may be technically used in superconducting photonics.
We theoretically study wave properties for one-dimensional defective asymmetric photonic crystals, air /(AB)MG(BA)N/air,air/(AQ)MG(QA)N /air and air/(BQ)MG(QB)N/air, where A is a lossy epsilonnegative material, B is a lossy mu-negative material, G and Q are dielectrics with different refractive indexes, and M and N are stack numbers with M ≠ N. Special attention has been paid to their absorption spectra. It is found that at certain frequencies the absorption can exhibit unidirectional properties. Our calculated results show two kinds of unidirectional absorption peaks. One is a single absorption peak whose frequency depends on the thickness of defect layer G. For the other peaks, its frequency does not change when the defect layer’s thickness changes. In addition, in the second kind of peaks, the peak numbers for forward and backward propagation are different, that is, there are (M − 1) absorption peaks for forward propagation, while there are (N − 1) absorption peaks for backward propagation. When the two kinds of unidirectional absorption peaks are merged, some new peaks appear, and both forward and backward propagation will have (M + N − 1) absorption peaks.
Terahertz transmission properties of a stage 3 triadic-Cantor-setphotonic crystal (S3 TCS PC) containing a semiconductor of n-InSb are theoretically investigated. With the resonant frequency in the permittivity function of n-InSb, transmission responses can be classified as three regions. In the two regions with frequencies well above and below the resonant frequency, the permittivity functions are nearly a positive constant and n-InSb is dielectric-like. For these two regions, transmittance response of S3 TCS PC at a given number of periods Np reveals that,within a photonic band gap, there are two groups of defect modes with numbers of Np and Np-1, respectively. Defect modes are shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. Additionally,adjusting the layer thickness enables us to control mode positions for the group of (Np–1)-mode, but the one with Np-mode is not able to be controlled. In a region of 5.1–6.2 THz, where the loss is large, there also are many transmission modes.

目錄 摘要....................................................ⅱ ABSTRACT.............................................. ⅳ Acknowledgements...................................... ⅵ 目錄...................................................ⅶ 圖目錄.................................................ⅷ 第一章 前言...............................................1 第二章 一維超導光子晶體缺陷的單向傳播分析 2-1 一維超導光子晶體缺陷的單向傳播分析缺陷簡介................11 2-2 一維超導光子晶體缺陷的單向傳播分析計算方式................13 2-3 一維超導光子晶體缺陷的單向傳播分析討論...................16 2-4 一維超導光子晶體缺陷的單向傳播分析結果...................24 第三章 非對稱的單負折射材料光子晶體研究 3-1 非對稱的單負折射材料光子晶體研究簡介.................... 25 3-2 非對稱的單負折射材料光子晶體研究計算方式..................26 3-3 非對稱的單負折射材料光子晶體研究數值討論..................29 3-4 非對稱的單負折射材料光子晶體研究結果討論..................38 第四章 用半導體材料以TCS方式堆疊成的光子晶體結構傳輸特性 4-1 用半導體材料以TCS方式堆疊成的光子晶體結構傳輸特性簡介......39 4-2 用半導體材料以TCS方式堆疊成的光子晶體結構傳輸特性計算方式..41 4-3 用半導體材料以TCS方式堆疊成的光子晶體結構傳輸特性討論......43 4-4 用半導體材料以TCS方式堆疊成的光子晶體結構傳輸特性結果討論..59 第五章 總結...............................................60 References...............................................62

[1] E. Yablonovitch "Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Phys. Rev. Lett., Vol. 58, 2059 (1987)
[2] S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices", Phys. Rev. Lett. 58, 2486 (1987)
[3] Review: S.Johnson (MIT) Lecture 3: Fabrication technologies for 3d photonic crystals, a survey http://ab-initio.mit.edu/photons/tutorial/L3-fab.pdf
[4] U. Gottlieb; J. C. Lasjaunias; J. L. Tholence; O. Laborde; O. Thomas; R. Madar, 、”Superconductivity in TaSi2 single crystals”, Phys. Rev. B, 1992, 45: 4803
[5] Landau, L.D. Electrodynamics of Continuous Media 8. Butterworth-Heinemann. 1984. ISBN 0-7506-2634-8.
[6] Tinkham, M. Introduction to Superconductivity, Second Edition. New York, NY: McGraw-Hill. 1996. ISBN 0486435032.
[7] G. Clemente, F. Habbal1, D. Turnbull and J. Bevk. High magnetic field transport properties of liquid quenched Nb3Al and Nb3Al(Si,Ge) superconducting compounds. Appl. Phys. Lett. 1985, 47 (640). doi:10.1063/1.96043
[8] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the Flow of Light. Princeton”, NJ, USA:Princeton Univ. Press, 1995.
[9] C. He et al., “Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film,” Opt. Exp., vol. 21, pp. 28933–28940, 2013.
[10] A. G. Ardakani, “Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals,” J. Opt. Soc. Amer. B, vol. 31, pp. 332–339, 2014.
[11] C. He et al., “Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystals,” Appl. Phys. Lett., vol. 96, 2010, Art. no. 111111.
[12] K. Jamshidi-Ghaleh and Z. Ebrahimpour, “One-way absorption behavior in defective 1D dielectric-metal photonic crystal,” Eur. Phys. J. D, vol. 67, 2013, Art. no. 27.
[13] A. K. Zvezdin and V. A. Kotv, Modern Megnetooptics and Magentooptical Materials. Boca Raton, FL, USA: CRC Press,1997.
[14] R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys., vol. 67, pp. 717–754, 2004.
[15] A. B. Khanikacv, A. V. Baryshcv, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett., vol. 95, 2009, Art. no. 011101.
[16] J. X. Fu, R.-J. Liu, and Z.-Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett., vol. 97, 2010, Art. no. 041112.
[17] X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B,vol. 80, 2009, Art. no. 033105.
[18] Y. Pao, R. X.Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding Unidirectional electromagnetic edge states,” Phys. Rev. Lett., vol. 106, 2011, Art. no. 093903.
[19] J. Lu, L. Shen, X. Deng, and X. Zheng, “Impact of photonic crystal boundary shape on the existence of one-way edge mode,” Appl. Opt., vol. 52, pp. 5216–5220, 2013.
[20] L Shen, Y. You, Z. Wang, and X. Deng, “Backscattering-immnue one-way surface magnetoplasmons at terahertz frequencies,” Opt. Exp., vol. 23, pp. 950–962, 2015.
[21] M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett., vol. 87, 2005, Art. no. 034102.
[22] Y. S. Dadoenkova, N. N. Dadoenkova, I. L. Lyubchanskii, Y. P. Lee, and T. Rasing, “Lateral shift of the light transmitted through a 1D superconducting photonic crystal,” AIP Conf. Proc., vol. 1475, no. 1, pp. 50–52, 2012.

[23] H.-T. Hsu and C.-J. Wu, “Thickness-dependent transmission in a finite photonic crystal containing nearly ferroelectric superconductor,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 2, Mar./Apr. 2015, Art. no. 9000105.
[24] J.-W. Liu, T.-W. Chang, and C.-J. Wu, “Filtering properties of photonic crystal dual-channel tunable filter containing superconducting defects,” J. Supercond. Novel Magn., vol. 27, pp. 67–72, 2014.
[25] T.-W. Chang, J.-W. Liu, T.-J. Yang, and C.-J. Wu, “Analysis of transmission properties in a photonic quantum well containing superconducting materials,” Prog. Electromagn. Res., vol. 140, pp. 327–340, 2013.
[26] C.-J. Wu, C.-L. Liu, and T.-J. Yang, “Investigation photonic band structure in a one-dimensional superconducting photonic crystal,” J. Opt. Soc. Amer. B, vol. 26, pp. 2089–2094, 2009.
[27] A. N. Poddubny, E. L. Ivchenko, and Yu. E. Lozovik, “Low-frequency spectroscopy of superconducting photonic crystal,” Solid State Commun., vol. 146, pp. 143–147, 2008.
[28] O. L. Berman, Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, “Superconducting photonic crystals: Numericalcalculation of the band structure,” Phys. Rev. B, vol. 74, 2006, Art. no. 092505.
[29] C.-J. Wu, M.-S. Chen, and T.-J. Yang, “Photonic band structure in superconductor-dielectric superlattice,” Physica C,vol. 432, pp. 133–139, 2005.
[30] H. Takeda, K. Yoshino, and A. A. Zakhidov, “Properties of Abrikosov lattices as photonic crystals,” Phys. Rev. B, vol. 70,2004, Art. no. 085109.
[31] C. H. Raymond Ooi, T. C. Au Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B, vol. 61, pp. 5920–5293, 2000.
[32] P. Yeh, Optical Waves in Layered Media. New York, NY, USA: Wiley, 1988.

[33] T. van Duzer and C. W. Turner, Principles of Superductive Devices and Circuits. London, U.K.: Edward Arnold, 1981.
[34] E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455–481 (2006).
[35] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[36] L. D. Negro, Optics of Aperiodic Structures (Pan Stanford, 2014).
[37] X. Sun and D. L. Jaggard, “Wave interactions with generalized Cantor bar fractal multilayers,” J. Appl. Phys. 70, 2500–2507 (1991).
[38] A. D. Jaggard and D. L. Jaggard, “Scattering from fractal superlattices with variable lacunarity,” J. Opt. Soc. Am. A 15, 1626–1635 (1998).
[39] C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7, 383–391 (1998).
[40] F. Chiadini, V. Fiumara, I. M. Pinto, and A. Scaglione, “Selfscaling properties of the reflection coefficient of Cantor prefractal multilayers,”Microw. Opt. Technol. Lett. 37, 339–343 (2003).
[41] M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics:quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[42] N. Ben Ali and M. Kanzari, “Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantorband-gap structures at optical telecommunication wavelength band,”J. Mod. Opt. 57, 287–294 (2010).
[43] Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100,023902 (2008).

[44] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514(1968).
[45] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[46] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. 10, 4785–4809 (1998).
[47] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,“Magnetism from conductors and enhanced nonlinear phenomena,”IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[48] K. Fenske and D. Misra, “Dielectric materials at microwave frequencies,”Appl. Microwave Wireless 12, 92–100 (2000).
[49] M.-R. Wu, J.-R. Chang Chien, and C.-J. Wu, “Transmission properties in lossy single-negative materials,” IEEE Photon. J. 7, 4600308(2015).
[50] E. Yablonovitch,T.J.Gmitter,K.M.Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms”Phys.Rev.Lett.67(1991)2295.
[51] T.Hattori,N.Tsurumachi,H.Nakatsuka,” Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals“J.Opt.Soc.Am.B14(1997)348.
[52] I. DelVillar,I.R.Matías,F.J.Arregui,R.O.Claus,” Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters” Opt.Exp.11(2003)430.
[53] F.Chiadini,V.Fiumara,I.M.Pinto,A.Scaglione,” Self-scaling properties of the reflection coefficient of Cantor prefactal multilayers “Microw.Opt.Technol.Lett.37 (2003)339.
[54] T.-C.King,C.-J.Wu,” Properties of defect modes in one-dimensional symmetric defective photonic crystals” PhysicaE69(2015)39.
[55] H. Tian,J.Zi,” One-dimensional tunable photonic crystals by means of external magnetic fields” Opt.Comm.252(2005)321.
[56] A.S.Sanchez,P.Halevi,” Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes “J.Appl.Phys.94(2003)797.
[57] H.-C. Hung,C.-J.Wu,T.-J.Yang,S.-J.Chang,” Magnetooptical effects in wave properties for a semiconductor photonic crystal at near-infrared “ IEEEPhotonicsJ.4(2012)903.
[58] T.-C.King,Y.P.Yang,Y.-S.Liou,C.-J.Wu,” Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect”SolidState Commun. 152(2012)2189.
[59] P.Yeh,OpticalWavesinLayeredMedia,JohnWiley&SonsInc,NY,2005.
[60] E.D. Palik,HandbookofOpticalConstants,Academic,NewYork,1998.

無法下載圖示 電子全文延後公開
2025/08/31
QR CODE