簡易檢索 / 詳目顯示

研究生: 邱德泰
Chiu, Te-Tai
論文名稱: 以奈米壓痕探討陽極氧化鋁之機械性質與奈米孔徑之相關性
Investigation of Mechanical Properties of Different Nanoporous Anodic Aluminum Oxide by Nanoindentation
指導教授: 屠名正
Twu, Ming-Jenq
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 陽極氧化鋁奈米壓痕
英文關鍵詞: indentation
DOI URL: https://doi.org/10.6345/NTNU202204467
論文種類: 學術論文
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陽極氧化鋁因具有良好的物理特性與化學特性,而且低成本與製造容易。廣泛應用在催化、化學與生物感測器、自組裝的模板、過濾器、奈米流體晶體管、濕度感測器、細胞培養、超級電容器。奈米壓痕技術由於據有奈米位移解析度,以及量測方法之均一性與簡易性等優點,故近年來被廣泛被應用於各種類型之材料測試上,應用層面可包含材料之彈性模數、硬度(降伏強度)、破壞特性等研究領域。本研究運用陽極氧化處理技術製作陣列式不同孔徑之奈米孔洞,並以奈米壓痕機(Nanoidentation)量測陣列式不同奈米孔洞之機械強度,並探討五種不同奈米孔洞機械強度之差異。奈米孔洞其孔徑在 50nm、150nm、250nm、350nm、450nm 。並使用奈米壓痕量測表面微結構之機械強度,並探討孔徑變化與機械強度之間的關係。其中彈性模數、硬度在壓痕速率0.05um/s下差異性相當小,但是在壓痕速率0.025um/s下時會發現差異性相當大。而回彈量與壓痕速率成正比。潛變與壓痕速率成反比,與孔徑大小無關係。

    Because Anodized Aluminum Oxide (AAO) has good physical properties and chemical properties, low-cost and easy to manufacture, it was widely used in catalysis, chemical and biological sensors, self-assembled templates, filters, nanofluid transistors, humidity sensors, cell culture and super capacitors. Due to nanometer displacement resolution, and the advantage of simplicity, nanoindentation has been used widely apply in various types of materials testing which includes the determination of elastic modulus, hardness (yield strength). The study investigates the mechanical properties of AAO with different size of nanopores.
    Array of different size of nanopores was made using anodized technology. The diameters of nanopores were 50 nm, 150 nm, 250 nm, 350 nm and 450 nm. The mechanical strength was measured using nanoindentation. The relationship between the different size of nanopores and the mechanical strength was investigated. The study found that the speed of nanoindentation was 0.05um/s which had no significant effect on the mechanical properties, such as elastic modulus and hardness. But for the speed of nanoindentation was 0.025um/s which had big significant effect on the mechanical properties. Rebound rate was proportional to the speed of nanoindentation. Creep rate was inversely proportional to the speed of nanoindentation. There is no relationship between creep rate and size of nanopores.

    摘要 i Abstract ii 誌謝 iii 總目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 論文架構 3 第二章 文獻研討 4 2.1 陽極氧化鋁發展回顧 4 2.2 奈米壓痕量測發展回顧 5 第三章 陽極氧化鋁與奈米壓痕 7 3.1 鋁之陽極處理 7 3.2 陽極氧化鋁孔洞大小控制原理 8 3.3 孔洞形成 9 3.4 穩態成長 10 3.5 奈米壓痕試驗介紹 11 3.6 硬度與楊氏模數之計算 12 3.7 奈米壓痕量測的基材效應 15 第四章 實驗方法與過程 16 4.1 實驗流程圖 16 4.2 場發射掃瞄式電子顯微鏡 17 4.3 陽極氧化鋁模板之奈米孔洞分析 18 4.4 奈米壓痕機 22 4.5 奈米壓痕測量方法 23 第五章 實驗結果與討論 28 5.1 硬度與彈性模數 28 5.2 回彈量 37 5.3 潛變 37 第六章 結論 38 附錄 39 參考文獻 49

    [1] Noda-shi and Chiba-ken, “On the Basic Concept of Nano-Technology ,” Tokyo Science University, (1974).
    [2] 劉如熹、辛嘉芬、陳浩銘,奈米材料的製作與應用─陽極氧化鋁膜及奈米線製作技術,全華圖書股份有公司,2008。
    [3] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Appl. Phys. A, “High aspect ratio microstructures based on anisotropic porous materials” (2002).
    [4] M. R. Falvo, G. J. Clary, R. MII. Taylor, V Chi, FP Brooks, S. Washburn, R Superfine, Nature,” Bending and buckling of carbon nanotubes under large Strain”, (1997).
    [5] H. Masuda, and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask”, Jpn. J. Appl. Phys, 35, 26-29,(1996).
    [6] Ch. R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chemistry
    of Materials, 8, 1739-1746 (1996).
    [7] D. Routkevitch, “Nonlithographic Nano-Wire Array Fabrication, physics,and Device Applications”, IEEE Trans. Electron Devices 43, 1646-1657 (1996).
    [8] H. Mori, “Electron Density Distribution in a Single Crystal of Mx[x=0.045(5)]”, Phys Rev. B, 65, 092507.1-092507.4 (2002).
    [9] A. M. Morals, and C. M. Lieber, “A Laser Ablation Method for the Crystalline Semiconductor Nanowires,” Science, 279, 208-211 (1998).
    [10] A. Moroz, “Tree-Dimensional Complete Photonic-Band-gap Structures in the Visible”, Rev. Lett., 83, 5274-5277 (1999).
    [11] D. M. Hartmann, and M. Heller, “Selective DNA Attachment of Micro-and Nanoscale Particles to Substrates”, J. Mater. Res., 17, 473-478 (2002).
    [12] C R. Martin, “Nanomatrials: A Membrane Based Synthetic Approach”, Science, 266, 1961-1966, (1994).
    [13] A. Yamaguchi, F. Uejo, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae “Self-assembly of a Silica-Surfactant Nanocomposite in a Porous Alumina Membrane”, NatMater, 3, 337–341 (2004).
    [14] A. Heilmann, N. Teuscher, A. Kiesow, D. Janasek, and U. Spohn, ”Nanoporous Aluminum Oxide as Novel Support Material for Enzyme Biosensors”, Journal of Nanoscience and Nanotechnology, 3,375–379 (2003).
    [15] L. Viassiouk , A. Krasnoslobodtsev , S. Smirnov, and M. Germann ”Direct Detection and Separation of DNA using Nanoporous Alumina Fitters”, Langmuir, 20, 9913-9915 (2004).
    [16] GH. Mihailescu, S. Pruneanu, S. Neamtu, and L. Olenic, “Alumina Membranes Used as Molecular Filters for Human red Blood Cells and Bovine Serum Albumin”, Phys, 471-474 (2001).
    [17]楊鎮宇,電化學法製備微奈米銅線技術與應用,成功大學奈米科技暨微系統工程研究所,2012。
    [18]陳銘心,多孔有序陽極氧化鋁在細胞培養之應用,龍華科技大學,工程技術研究所,2011。
    [19]廖泰翔,氣體輔助熱壓陽極氧化鋁模具製作生醫檢測元件之研究,臺灣大學,機械工程學研究所,2013。
    [20]謝政良,以雙層奈米多孔隙陽極氧化鋁為感測材料及具埋藏電極之電容式濕度感測器,清華大學,動力機械工程學系,2013。
    [21]劉林益,陽極氧化鋁基材製程改善及其應用於固態超級電容器之研究
    臺灣大學,機械工程學研究所,2013。
    [22]陳智堯,以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板,國立中央大學,材料科學與工程研究所,2013。
    [23] Te-Hua Fang , Tong Hong Wang , Chien-Hung Liu , Liang-Wen Ji , and Shao-Hui Kang” Physical Behavior of Nanoporous Anodic Alumina Using Nanoindentation and Microhardness Tests,” Nanoscale Research Letters- Springer, 410–415(2007).
    [24] Bengogh, Stuart, British Patent, 223994, (1923).
    [25] F. Keller, M.S. Hunter, and D.L. Robinson “Structural features of oxide coating on aluminum, “Journal of the Electrochemical Society, Vol.100, pp.11-419, (1953).
    [26] J.P. O’Sullivan and G.C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, (1970).
    [27]G.E. Thompson and G. C. Wood, “Porous anodic film formation on aluminum,” Nature, Vol. 290.pp.230-232, (1981).
    [28] G.E. Thompson and G. C. Wood, ” Corrosion: Aqueous Process and passive films, “Treaties on Material Science and Technology, Academic Press Inc.(London) Ltd., Vol.23, Chap.5, pp.206, (1983).
    [29] Hideki Masuda and Kenji Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol.268, pp.1466-1468, (1995).
    [30]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele ,”Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina, ”Journal of Applied Physics,Vol.84, pp.6023-6026, (1998).
    [31]O. Jessensky, F. Muller, and U. Gosele,” Self-organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters, Vol. 73, pp.1173-1175, (1998).
    [32] A.P. Li, F. Muller, A. Birner, K. Nielsch,and U. Gosele,”Polycrystalline nanopore arrays with hexagonal ordering on aluminum” The Journal of Vacuum Science and Technology A,Vol.17, pp.1428-1431, (1999).
    [33] Hideki Masuda, Masato Yotsuya, Mari Asano, and Kazuyuki Nishio, ”Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina, ”Applied Physics Letters,Vol.78, pp.826-828, (2001).
    [34] Nai-Qin Zhao, Xiao-Xue Jiang, Chun-Sheng Shi, Jia-Jun Li, Zhi-Guo Zhao, Xi-Wen Du, ”Effects of anodizing conditions on anodic alumina structure, ”Journal of Materials Science,Vol.42, pp.3878-3882, (2007).
    [35] H. Hertz, “Ueber die Ber ü hrung Fester Elastischer Körper”, J. Reine und Angewandte Mathematik, 92, pp.156-171, (1882).
    [36] I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Engng. Sci., 3, 47-57, (1965).
    [37] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 1564-1583, (1992).
    [38] T. Y. Tsui, W. C. Oliver and G. M. Pharr, “Influences of stress on the
    measurement of mechanical properties using nanoindentation:Part I. Experimental studies in an aluminum alloy,” J. Mater. Res., 11,752-759, (1996).
    [39] A. Iost and R. Bigot, “Indentation size effect:reality or artifact?” J. Mater. Sci., 31, 3573-3577, (1996).
    [40] R. Saha, and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Mater. , 50, 23-38, (2002).
    [41] R. B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Struct. , 23, 1657-1664, (1987).
    [42] D. B. Marshall and B. R. Lawn, “Indentation of brittle materials, Microindentation techniques in Materials Science and Engineering,” ASTM STP 889, 26-46, (1986).
    [43] S. Yang, Y. W. Zhang and K. Zeng, “Analysis of nanoindentation reep for polymeric materials,” J. Appl. Phys., 95, 3655-3666, (2004).
    [44] D. B. Marshall and A. G. Evans, “Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination,” J. Appl. Phys., 56, 2632-2638, (1984).
    [45] A. A. Volinsky, N. R. Moody and W. W. Gerberich, “Interfacial toughness measurements for thin films on substrates,” Acta Mater., 50, 441-466, (2002).
    [46] A. A. Volinsky and W. W. Gerberich, “Nanoindentation techniques for assessing mechanical reliability at the nanoscale,” Microelect. Eng., 69, 519-527, (2003).
    [47] J. Zheng, M. Kato, S. Takezoe and K. Nakasa, “Evaluation of wear resistance of sputtered amorphous SiCN film and measurement of delamination strength of film by micro edge-indent method,” Journal of the Society of Materials Science, Japan, 54, 1022-1029, (2005).
    [48] J. M. Moon, A. Wei, J. Phys. Chem. B109, 23336, (2005).
    [49] L. Young, Anodic Oxide Films; Academic Press: New York, (1971).
    [50] O. Jessensky, F. Műller, U. Gősele, Appl. Phys. Lett., 72, 1173, (1998).
    [51] N. A .Stillwell, D. Tabor, “Elastic Recover of Conical Indentations”, Proc. Phys. Soc. London, 78, pp. 169-179, (1961).
    [52] A. K. Bhattacharya, W. D. Nix, “Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates”, International Journal of Solids and Structures, 24, pp.1287-1298, (1988).
    [53] A. K. Bhattacharya, W. D. Nix, “Finite Element analysis of cone indentation”, International Journal of Solids and Structures, 27, pp. 1047-1058, (1991).
    [54] H. F. Wang, H. Bangert, “Three-dimensional Finite Element Simulation of Vickers Indentation on Coated Substrates.” Mater. Sci. Eng., A163, pp. 43-50, (1993).
    [55] M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, “Simulation of Berkovich nanoindentation experiments on thin films using finite element method.” Thin Solid Films, 333, pp. 278-286, (1998).
    [56] Thomas Chudoba, “Introduction of the Universal Nanomechanical Tester UNAT.” ASMEC, (2013).

    無法下載圖示 本全文未授權公開
    QR CODE