簡易檢索 / 詳目顯示

研究生: 李柏寬
Li, Po-Kuan
論文名稱: 多波段紅外線的高反射材料研製暨其應用在粉碎泌尿道結石的可行性探討
The Development of High Multi-band Infrared Reflective Material and the Feasibility of Applying it in Lithotripsy for Urinary Calculi
指導教授: 謝振傑
Chieh, Jen-Jie
口試委員: 姜秉均
Chiang, Bing-Juin
劉如芳
Liu, Ju-Fang
廖書賢
Liao, Shu-Hsien
謝振傑
Chieh, Jen-Jie
口試日期: 2022/08/12
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 多波段紅外線高反射材料泌尿道結石碎石術
英文關鍵詞: multi-band infrared, Highly Reflective material, urinary calculi, lithotripsy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201104
論文種類: 學術論文
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代人面對著許多各式各樣的壓力,使得人們被多種疾病纏身,其中泌尿道結石在台灣被譽為最常見的泌尿道疾病之一。本研究開發一種高反射材料,能夠反射多波段之紅外線,配合本實驗室發現出一種創新前瞻的微小黑體輻射體-奈米碳,並配合多波段紅外線的設備結合成反射腔體,使能量可以往特定的方向引導、收束,並加強對物質的加熱及灼燒能力,減小熱能對人體與電氣設備影響的可能性並應用在粉碎泌尿道結石之可行性探討。

    本研究開發一種擁有多波段之紅外輻射熱能的陶瓷奈米碳加熱體,與其他相近之技術雷射相比有著較優良的發射轉換效率上。實驗中所提出的陶瓷奈米碳加熱體有相對寬廣之波段,後者本身因原理不同而以單一波段為主,但在條件相同的比較中,我們發現能對單一物質帶來更好的熱能輻射破壞。

    本研究開發的多波段紅外線之反射腔體,應用在粉碎自製結石上有著卓越的效果,但在實際應用於草酸鈣結石中,實際粉碎能力尚可但並不完美。因此在未來的製程上須考慮更多實際因素,方可取得更良好的應用成果。

    Modern people are faced with many kinds of pressure, which makes people suffer from multiple diseases, among which urinary calculi are known as one of the most common uropathy in Taiwan. In this research, we develop a highly reflective material that can reflect multi-band infrared. In cooperation with our laboratory, we have discovered an innovative and forward-looking tiny black body radiation-Nanocarbon, which is combined with multi-band infrared equipment to form a reflector, so that the energy can be It guides, restrains, and strengthens the heating and burning ability of substances in a specific direction and reduces the possibility of thermal energy affecting human body and electrical equipment, and is used in the feasibility study of crushing urinary tract stones.
    In this research, a ceramic nanocarbon heating body with multi-band infrared radiation heat energy has been developed. Compared with other similar technology lasers, it has better emission conversion efficiency. The ceramic nanocarbon heating body proposed in the experiment has a relatively broad band. The latter itself is dominated by a single band due to different principles. However, in the same comparison under the same conditions, we found that it can bring better thermal energy radiation damage to a single substance.
    The multi-band infrared reflector has been developed in this research and it has excellent effect in crushing self-made stones, but in practical application of calcium oxalate stones, the actual crushing ability is acceptable but not perfect. Therefore, more practical factors must be considered in the future process to achieve better application results.

    第一章 緒論 1 1-1 研究背景 1 1-2 泌尿道結石 3 1.2.1 草酸鈣結石 4 1.2.2 磷酸鈣結石 5 1.2.3 尿酸性結石 6 1.2.4 其他結石 7 1-3 反射熱材料 9 1.3.1 熱輻射之基本特性 10 1.3.1 硫酸鋇材料之基本特性 10 1.3.2 石膏材料之基本特性 12 1-4 治療方式 12 1.4.1 體外震波碎石術 13 1.4.2 經皮腎臟碎石術 13 1.4.3 輸尿管鏡碎石術或膀胱鏡碎石術 14 1.4.4 雷射波碎石術 14 1-5 研究目的 15 第二章 理論基礎 17 2-1 結石成石機制 17 2.1.1 過飽和溶液 17 2.1.2 成核 17 2.1.3 聚合 18 2.1.4 有利成石的催化條件 18 2.1.5 不利成石的抑製條件 18 2-2 奈米碳產熱機制 19 2.2.1 奈米碳熱電發熱原理 19 2.2.2 布朗運動 19 2.2.3 黑體輻射 21 2-3 熱輻射反射機制 22 2.3.1 漫反射 22 2.3.2 鏡面反射 23 第三章 實驗材料與方法 25 3-1 泌尿道結石之自製結石 25 3.1.1 自製結石之結構分析 26 3.1.2 實驗儀器簡介 26 3-2 多波段紅外線之陶瓷奈米碳加熱體 27 3.2.1 陶瓷奈米碳加熱體溫度分析 29 3.2.2 實驗儀器簡介 29 3-3 多波段紅外線之反射材料研製 30 3.3.1 熱能輻射之反射分析 31 3.3.2 實驗儀器簡介 31 3-4 多波段紅外線之反射腔體 33 3.4.1 多波段紅外線之反射腔體溫度分析 35 3.4.2 實驗儀器簡介 35 3-5 多波段紅外線之反射腔體應用於粉碎泌尿道結石 35 3.5.1 多波段紅外線之反射腔體應用於粉碎泌尿道結石溫度分析 36 3.5.2 實驗儀器簡介 36 第四章 實驗結果與討論 37 4-1 泌尿道結石之自製結石分析及探討 37 4.1.1 X射線繞射儀量測結果 37 4.1.2 結果與討論 38 4-2 多波段紅外線之反射材料分析及探討 38 4.2.1 石膏材料之反射分析 38 4.2.2 紅外線反射材料之反射分析 41 4.2.3 結果與討論 45 4-3 多波段紅外線之陶瓷奈米碳加熱體分析及探討 45 4.3.1 陶瓷奈米碳加熱體溫度量測結果-規格A 45 4.3.2 陶瓷奈米碳加熱體溫度量測結果-規格B 49 4.3.3 陶瓷奈米碳加熱體溫度量測結果-規格C 50 4-4 多波段紅外線之反射腔體分析及探討 50 4.4.1 輻射熱能腔體溫度量測結果 51 4.4.2 受熱腔體溫度量測結果 52 4.4.3 結果與討論 53 4-5 多波段紅外線之反射腔體應用於粉碎泌尿道結石分析及探討 53 4.5.1 應用於粉碎泌尿道結石結果-自製結石 54 4.5.2 應用於粉碎泌尿道結石結果-草酸鈣結石 56 4.5.3 結果與討論 59 第五章 結論與未來方向 60 5-1 結論 60 5-2 未來方向 60 . . 參考文獻 61

    [01]Y.-H. Lee, et al.,“Epidemiological studies on the prevalence of upper urinary calculi in Taiwan,”Urologia internationalis, vol. 68, pp. 172-177, 2000.
    [02]K. K. Stamatelou, et al.,“Time trends in reported prevalence of kidney stones in the United States: 1976–1994,”Kidney Int, vol. 63, pp. 1817-1823, 2003.
    [03]C. D. Scales Jr, et al.,“Prevalence of kidney stones in the United States,”Eur Urol, vol. 62, pp. 160-165, 2012.
    [04]江漢聲,“結石百問”,台灣,健康世界,1998。
    [05]J. Y. Clark, et al.,“Economic impact of urolithiasis in the United States,”The Journal of urology, vol. 154, pp. 2020-2024, 1995.
    [06]M. S. Pearle, et al.,“Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis,”J Urol, vol. 173, pp. 848-857, 2005.
    [07]王中敬,“細說尿路結石”,台灣,吳氏圖書股份有限公司,1996。
    [08]J. M. Baumann, et al.,“Crystal sedimentation and stone formation,”Urological research, vol. 38, pp. 21-27, 2010.
    [09]J. Cloutier, et al.,“Kidney stone analysis: “Give me your stone, I will tell you who you are!”,”World Journal of Urology, vol. 33, pp. 157-169, 2015.
    [10]Ph. D. Michel Daudon and M. D. Paul Jungers,“Stone Composition and Morphology: A Window on Etiology,” Urolithiasis, pp. 113-140, 2012.
    [11]陳偉寶,“人體石頭記”,台灣,原水文化,2006。
    [12]B. Mahltig, et al.,“Hybrid sol-gel materials for realization of radiation protective coatings—a review with emphasis on UV protective materials,” Journal of Sol-Gel Science and Technology, 2021.
    [13]S. B. Gracie,“Light, Dark, and the Electromagnetic Spectrum: A Look at Everything Light, Associated Phenomena, the Electromagnetic Spectrum and the History and Types of Illumination,”CAN, Tellwell Talent, 2022.
    [14]E. D. B. Lorenzo, et al.,“Effect of barium sulfate surface treatments on the mechanical properties of acrylic bone cements,” Polymer Bulletin, vol. 78, pp. 5997-6010, 2021.
    [15]V. A. Master, et al.,“Stone Nomenclature and History of Instrumentation for Urinary Stone Disease,” Urinary Stone Disease, pp. 3-26, 2007.
    [16]D. Assimos, et al.,“Surgical Management of Stones: AUA/Endourology Society Guideline (2016),”USA, Endourological Society Guideline, 2016.
    [17]D. L. Floratos and J. J. de la Rosette,“Lasers in urology,”BJU Int, vol. 84, pp. 204-211, 1999.
    [18]A. S. Sandhu, et al.,“Holmium : YAG Laser for Intra Corporeal Lithotripsy,”Medical Journal Armed Forces India, vol. 63, pp. 48-51, 2007.
    [19]H. H. Dorian, et al.,“Evidence for aggregation in oxalate stone formation: atomic force and low voltage scanning electron microscopy,”J Urol, vol. 156, pp. 1833-1837, 1996.
    [20]L. B. Gower, et al.,“Mineralogical signatures of stone formation mechanisms,”Urol Res, vol. 38, pp. 281-292, 2010.
    [21]F. Grases, et al.,“Studies on structure of calcium oxalate monohydrate renal papillary calculi. Mechanism of formation.,” Scanning Microsc, vol. 7, pp. 1067-1074, 1993.
    [22]C. Y. Pak and K. Holt,“Nucleation and growth of brushite and calcium oxalate in urine of stone-formers,” Metabolism, vol. 25, pp. 665-673, 1976.
    [23]A. P. Evan, et al.,“Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle,”J Clin Invest, vol. 111, pp. 607-616, 2003.
    [24]S. Sandersius and P. Rez,“Morphology of crystals in calcium oxalate monohydrate kidney stones,”Urol Res, vol. 35, pp. 287-293, 2007.
    [25]G. Farell, et al.,“Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals,” J Am Soc Nephrol, vol. 15, pp. 3052-3062, 2004.
    [26]A. Ebrahimpour, et al.,“Induced crystal growth of calcium oxalate monohydrate at hydroxyapatite surfaces. The influence of human serum albumin, citrate, and magnesium,”Langmuir, vol. 7, pp. 577-583, 1991.
    [27]J. C. Ebrahimpour, et al.,“Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibitied by specific anions,”Renal Fluid Electrolyte Physiol, vol. 37, pp. 604-612, 1995.
    [28]H. Fleisch,“Inhibitors and promoters of stone formation,”Kidney Int, vol. 13, pp. 361-371, 1978.
    [29]R. L. Ryall, et al.,“The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro,”Clin Chim Acta, vol. 112, pp. 349-356, 1981.
    [30]J. J. van Rooijen, et al.,“Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein,”Glycobiology, vol. 9, pp. 21-30, 1991.
    [31]M. D. Binder, et al.,“Encyclopedia of Neuroscience,”USA, Academic Press, 2009.
    [32]N. Boughen,“LIGHTWAVE V9 LIGHTING (W/CD),”USA, Jones & Bartlett Learning, 2007.

    無法下載圖示 電子全文延後公開
    2027/08/12
    QR CODE