簡易檢索 / 詳目顯示

研究生: 程建彰
Cherng Jiann-Jann
論文名稱: 含硫三鐵錯合物 [SFe3(CO)9]2- 的化性研究與新系列 15 族-鉻錯合物的合成開發與相關反應探討
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 350
中文關鍵詞: 主族元素過渡金屬金屬團簇化合物羰基
英文關鍵詞: main group, transition metal, metal cluster, carbonyl, chromium
論文種類: 學術論文
相關次數: 點閱:175下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
1. S/Fe/CO 系統
Na2SO3 與 Fe(CO)5 在鹼性甲醇溶液中加熱反應產生四面體結構化合物 [Et4N]2[SFe3(CO)9] (1)。利用 4 M 鹽酸與 1 進行酸化反應得到質子化產物 [Et4N][SFe3(m-H)(CO)9] 與 [SFe3(m-H)2(CO)9]。進一步將 1 與 CF3SO3CH3 反應則得到甲基化產物 [Et4N][MeSFe3(CO)9] (2),其中甲基鍵結於 S 原子上。若將 1 與另一有機鹵化物 BrCH2C(O)OCH3 反應則得到 [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3),其中有機配子 CH2C(O)OCH3 接在 Fe 原子上。此外,具八面體結構之化合物 [Et4N]2[SFe2Ru3(CO)14] (4) 可由 1 與 Ru3(CO)12 在丙酮中加熱反應產生。若進一步將 4 與 CF3SO3CH3 反應則可得同樣具八面體結構之化合物 [Et4N][MeSFe2Ru3(CO)14] (5),其中 S 原子具少見的五配位鍵結模式。
化合物 1 與溴丙炔以莫耳數比 1:2 於氰甲烷反應,可分離出三種產物,分別是中性化合物 (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6)、SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) 及主要陰離子性產物[Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8)。進一步將主產物 8 與 [Cu(CH3CN)4][BF4] 於二氯甲烷中反應,可分離出化合物 6 和 SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9)。若將 8 與 CF3SO3CH3 反應,則可得甲基化產物 (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)-
C(H)=CCH2) (10)。
2. Bi/Fe/CO 系統
將已知的混合 Zintl 與過渡金屬的化合物 [Et4N]2[Bi4Fe4(CO)13] 與 Fe(CO)4(NCCH3) 以莫耳數比 1:1 於氰甲烷反應,可得到預期的核擴大產物 [Et4N]2[Bi4Fe5(CO)17]。然而若將 [Et4N]2[Bi4Fe4(CO)13] 與 [Mn(CO)5(CH3CN)][PF6] 反應則沒有得到預期的產物 [Et4N][Bi4Fe4Mn(CO)18],而是得到混合過渡金屬團簇化合物 [Et4N][Bi4Fe3Mn(CO)14] (11)。
3. E/Cr/CO (E = As,Sb,Bi) 系統
將 E2O3 (E = As、Sb) 與 Cr(CO)6 在高濃度的鹼性甲醇中反應,可得到具角錐結構之化合物 [Et4N]2[HE{Cr(CO)5}3] (E = As,13a;Sb,13b),此為第一種含有 E-H 鍵 (E = As,Sb) 的第六族羰基化合物。在 As 系統中,我們還可分離出另一含兩個 As-H 鍵的產物[Et4N][H2As{Cr(CO)5}2] (12)。若將 13a 與 RBr (R = PhCH2,HCoCCH2) 於 THF 中反應,則產生加成產物 [Et4N][(R)(Br)As{Cr(CO)5}2] (R = PhCH2,14;CH3CoC,15) 和 [BrCr(CO)5]-。然而 13b 與有機鹵化物 RX (R = PhCH2,X = Br;R = CH3(CH2)5C(O),X = Cl) 反應,則得到鹵化產物 [XSb{Cr(CO)5}3]2- (X = Br,Cl)。混合雙鹵化錯合物 [Bu4N][BrISb{Cr(CO)5}2] (17) 可由 [Bu4N]2[BrSb{Cr(CO)5}3] 與 CH2I2 反應產生。但若將 [Et4N]2[BrSb{Cr(CO)5}3] 與 CH3C(O)Cl 反應,則產生 [Et4N][Cl2Sb-
{Cr(CO)5}2] (16),而非預期的 [Et4N][BrClSb{Cr(CO)5}2]。
在低於室溫時 (<20℃),Na2BiO3 與 Cr(CO)6 在高濃度的鹼性甲醇中反應,可得一深棕色的產物 [Et4N]3[Bi{Cr(CO)5}4] (18)。若將反應溫度提高 (>30℃),則可分離出一紫紅色產物 [Et4N]2[MeBi{Cr(CO)5}3] (19),產物中甲基應是來自於甲醇。若將化合物 18 與 RI (R = Me, Et) 反應,可得烷基化產物 [Et4N]2[RBi{Cr(CO)5}3]。然而若將化合物 18 在二氯甲烷中攪拌,則會形成氯化產物 [Et4N]2[ClBi{Cr(CO)5}3] (20)。而[Et4N]2[MeBi{Cr(CO)5}3] 若進一步與 MeI 反應,則得到雙甲基化產物 [Et4N][Me2Bi{Cr(CO)5}2] (21)。

Abstract
1. S/Fe/CO System
The reaction of Na2SO3 with Fe(CO)5/KOH in methanol forms the tetrahedral cluster [Et4N]2[SFe3(CO)9] (1) in good yield. Acidification of 1 with H+ forms the monohydrido cluster [Et4N][SFe3(m-H)(CO)9] and the dihydrido cluster SFe3(m-H)2(CO)9. Further methylation of 1 with CF3SO3CH3 produces the sulfur-methylated cluster [Et4N][MeSFe3(CO)9] (2). However, the reaction of 1 with BrCH2C(O)OCH3 forms [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3), in which the organic ligand CH2C(O)OCH3 bonds with Fe atom. When 1 is treated with Ru3(CO)12 in refluxing acetone, the octahedral cluster [Et4N]2[SFe2Ru3-
(CO)14] (4) is obtained. Subsequent methylation of 4 with CF3SO3CH3 gives the octahedral cluster [Et4N][MeSFe2Ru3(CO)14] (5), in which the sulfur atom is pentacoordinated to one methyl group and two Ru and two Fe atoms.
The reaction of 1 with propargyl bromide in CH3CN affords three novel products, (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6), SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) and the heterotetranuclear metal-(acylallenyl) complexes [Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)-
C(H)=C=CH2)] (8). When 8 is treated with [Cu(CH3CN)4][BF4], 6 and SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9) are obtained. Further reaction of 8 with CF3SO3CH3 yields the methylated cluster (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)C(H)=CCH2) (10).
2. Bi/Fe/CO System
When [Et4N]2[Bi4Fe4(CO)13] is treated with Fe(CO)4(NCCH3), the expected product [Et4N]2[Bi4Fe5(CO)17] is obtained. Further treatment of [Et4N]2[Bi4Fe4(CO)13] with [Mn(CO)5(CH3CN)][PF6] forms the mixed-metal cluster [Et4N][Bi4Fe3Mn(CO)14] (11) instead of the expected complex [Et4N]2[Bi4Fe4Mn(CO)18].
3. E/Cr/CO (E = As, Sb, Bi) System
The new series of trigonal-pyramidal chromium complexes [Et4N]2[HE{Cr(CO)5}3] (E = As, 13a; Sb, 13b) are obtained from the reaction of E2O3 (E = As, Sb) with Cr(CO)6 in concentrated KOH methanolic solution. These are the first examples of group 6 complexes containing E-H fragment (E = As, Sb). In As case, we also obtain the dihydrido complex [Et4N][H2As{Cr(CO)5}2] (12). Subsequent reaction of 13a with RBr (R = PhCH2, HCoCCH2) forms the addition products [Et4N][(R)(Br)As{Cr(CO)5}2] (R = PhCH2, 14; CH3CoC, 15) and [BrCr(CO)5]-. However, 13b reacts with RX (R = PhCH2, X = Br; R = CH3(CH2)5C(O), X = Cl) respectively to produce the haloantimony complexes [XSb{Cr(CO)5}3]2- (X = Br, Cl). The mixed dihaloantimony complex [Bu4N][BrISb{Cr(CO)5}2] (17) can be produced from the bromoantimony complex [Bu4N]2[BrSb{Cr(CO)5}3] with CH2I2. However, if [Et4N]2[BrSb{Cr(CO)5}3] is treated with CH3C(O)Cl, a dicholoantimony complex [Et4N][Cl2Sb{Cr(CO)5}2] (16) is obtained instead of the expected mixed bromocholoantimony complex.
The treatment of Na2BiO3 with Cr(CO)6 in concentrated KOH methanolic solution at low temperature (<20℃) gives the trianion complex [Et4N]3[Bi{Cr(CO)5}4] (18). If the reaction is at higher temperature (>30℃), the purple-red complex [Et4N]2[MeBi{Cr(CO)5}3] (19) is obtained, in which the methyl group is from methanol. When 18 is treated with RI (R = Me, Et), the bismuth-alkylated cluster [Et4N]2[RBi{Cr(CO)5}3] is obtained. Further reaction of 18 with CH2Cl2 produces the cholobismuth complex [Et4N]2[ClBi{Cr(CO)5}3] (20). Subsequent reaction of 19 with MeI yields [Et4N][Me2Bi{Cr(CO)5}2] (21).

目 錄 中文摘要……………… …………………………………………………… I 英文摘要……………… …………………………………………………… IV 1. 前言……………………………………………………………... 1 1.1. 背景……………….. …………………………………………… 1 1.2 研究目標………………………………………………………... 13 2. 實驗……………………………………………………………... 14 2.1. 一般方法………………………………………………………… 14 2.1-1. 實驗過程………………………………………………………… 14 2.1-2. 使用的光譜儀器………………………………………………… 14 2.1-3. 實驗溶劑………………………………………………………… 15 2.1-4. 使用藥品………………………………………………………… 16 2.1-5. 縮寫表…………………………………………………………… 17 2.2 [Et4N]2[SFe3(CO)9] (1) 的合成…………………………………. 19 2.3 [Et4N]2[SFe3(CO)9] (1) 與 HCl 的反應……………………….. 19 2.4 [Et4N]2[SFe3(CO)9] (1) 與 CH2I2 的反應……………………… 20 2.5 [Et4N]2[SFe3(CO)9] (1) 與 CF3SO3CH3 的反應………………. 20 2.6 [Et4N]2[SFe3(CO)9] (1) 與 BrCH2C(O)OCH3 的反應…………. 21 2.7 [Et4N]2[SFe2Ru3(CO)14] (4) 的合成…………………………….. 22 2.8 [Et4N]2[SFe2Ru3(CO)14] (4) 與 CF3SO3CH3 的反應…………… 23 2.9 [Et4N]2[SFe3(CO)9] (1) 與 HCoCCH2Br 的反應 (1:2)……... 24 2.10 [Et4N]2[SFe3(CO)9] (1) 與 HCoCCH2Br 的反應 (1:16)……. 26 2.11 [Et4N][SFe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8) 與 [Cu(CH3CN)4][BF4] 的反應……………………... 27 2.12 [Et4N][SFe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8) 與 CF3SO3- CH3反應………………………………………………………… 28 2.13 [Et4N]2[Bi4Fe4(CO)13] 與 Fe(CO)4(NCCH3) 的反應………….. 29 2.14 [Et4N]2[Bi4Fe4(CO)13] 與 [Mn(CO)5(CH3CN)][PF6] 的反應…. 30 2.15 As2O3 與 Cr(CO)6/KOH 的反應……………………………… 30 2.16 Sb2O3 與 Cr(CO)6/KOH 的反應……………………………… 32 2.17 [Et4N][H2As{Cr(CO)5}2] (12) 與 Cr(CO)6/KOH 的反應…….. 33 2.18 [Et4N]2[HAs{Cr(CO)5}3] (13a) 與 PhCH2Br 的反應………… 33 2.19 [Et4N]2[HAs{Cr(CO)5}3] (13a) 與 HCoCCH2Br 的反應…….. 34 2.20 [Bu4N]2[HSb{Cr(CO)5}3] (13b) 與 PhCH2Br 的反應………… 35 2.21 [Et4N]2[HSb{Cr(CO)5}3] (13b) 與 CH3(CH2)5C(O)Cl 的反應 36 2.22 [Et4N]2[BrSb{Cr(CO)5}3] 與 CH3C(O)Cl 的反應……………. 36 2.23 [Bu4N]2[BrSb{Cr(CO)5}3] 與 CH2I2 的反應………………….. 37 2.24 NaBiO3 與 Cr(CO)6/KOH 的反應…………………………….. 38 2.25 [Et4N]3[Bi{Cr(CO)5}4] (18) 在鹼性甲醇溶液中的反應………. 40 2.26 [Et4N]3[Bi{Cr(CO)5}4] (18) 與 MeI 的反應………………….. 40 2.27 [Et4N]3[Bi{Cr(CO)5}4] (18) 與 EtI 的反應…………………… 41 2.28 [Et4N]3[Bi{Cr(CO)5}4] (18) 與 CH2Cl2 的反應………………. 41 2.29 [Et4N]2[ClBi{Cr(CO)5}3] (20) 與 AgNO3 的反應……………. 42 2.30 [Et4N]2[ClBi{Cr(CO)5}3] (20) 與 MeLi 的反應………………. 43 2.31 [Et4N]2[MeBi{Cr(CO)5}3] (19) 與 MeI 的反應………………. 43 2.32 [Et4N][MeSFe3(CO)9] (2) 的晶體結構解析…………………… 45 2.33 [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3) 的晶體結構解析 49 2.34 [Et4N]2[SFe2Ru3(CO)14] (4) 的晶體結構解析…………………. 53 2.35 [Et4N][MeSFe2Ru3(CO)14] (5) 的晶體結構解析………………. 57 2.36 (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6) 的晶體結構解析 61 2.37 SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) 的晶體結構解析…. 65 2.38 [Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8) 的晶體 結構解析………………………………………………………… 69 2.39 SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9) 的晶體結構解析…. 73 2.40 (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)C(H)=CCH2) (10) 的晶體 結構解析………………………………………………………… 77 2.41 [Et4N][Bi4Fe3Mn(CO)14]‧0.5THF (11) 的晶體結構解析…… 81 2.42 [Et4N][H2As{Cr(CO)5}2] (12) 的晶體結構解析………………. 85 2.43 [Et4N]2[HAs{Cr(CO)5}3] (13a) 的晶體結構解析……………… 89 2.44 [Et4N]2[HSb{Cr(CO)5}3] (13b) 的晶體結構解析……………… 93 2.45 [Et4N][(Br)(PhCH2)As{Cr(CO)5}2] (14) 的晶體結構解析……. 97 2.46 [Et4N][(Br)(C3H3)As{Cr(CO)5}2] (15) 的晶體結構解析……… 101 2.47 [Et4N][Cl2Sb{Cr(CO)5}2] (16) 的晶體結構解析………………. 105 2.48 [Bu4N][BrISb{Cr(CO)5}]‧(CH2Cl2)0.5 (17) 的晶體結構解析 109 2.49 [Et4N]2[MeBi{Cr(CO)5}3] (19) 的晶體結構解析……………… 113 2.50 [Et4N]2[ClBi{Cr(CO)5}3] (20) 的晶體結構解析………………. 117 2.51 [Et4N][Me2Bi{Cr(CO)5}2] (21) 的晶體結構解析……………... 121 3. 結果……………………………………………………………... 125 3.1 [Et4N]2[SFe3(CO)9] (1) 的合成及化性研究…………………… 125 3.2 [Et4N]2[SFe3(CO)9] (1) 與有機雙官能基試劑 HCoCCH2Br 的反應………………………………………………………….. 127 3.3 [Et4N]2[Bi4Fe4(CO)13] 與金屬羰基化合物的反應……………. 129 3.4 E-Cr-CO (E = As,Sb) 系統…………………………………... 130 3.5 Bi-Cr-CO 系統………………………………………………….. 132 3.6 [Et4N][MeSFe3(CO)9] (2) 的晶體結構………………………… 134 3.7 [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3) 的晶體結構….. 135 3.8 [Et4N]2[SFe2Ru3(CO)14] (4) 的晶體結構………………………. 135 3.9 [Et4N][MeSFe2Ru3(CO)14] (5) 的晶體結構……………………. 136 3.10 (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6) 的晶體結構….. 137 3.11 SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) 的晶體結構….…… 137 3.12 [Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8) 的 晶體結構………………………………………………………... 138 3.13 SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9) 的晶體結構………. 139 3.14 (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)C(H)=CCH2) (10) 的 晶體結構……………………………………………………….. 140 3.15 [Et4N][Bi4Fe3Mn(CO)14]‧0.5THF (11) 的晶體結構………… 140 3.16 [Et4N][H2As{Cr(CO)5}2] (12) 的晶體結構……………………. 141 3.17 [Et4N]2[HE{Cr(CO)5}3] (E = As,13a;Sb,13b) 的晶體結構 141 3.18 [Et4N][(Br)(R)As{Cr(CO)5}2] (R = PhCH2,14;CH3CoC,15)、 [Et4N][XX¢Sb{Cr(CO)5}2] (X = X¢ = Cl,16;X = Br,X¢ = I,17) 與[Et4N]2[Me2Bi{Cr(CO)5}2] (21)的晶體結構………………… 142 3.19 [Et4N]2[XBi{Cr(CO)5}3] (X = Me,19;Cl,20) 的晶體結構.. 142 4. 討論……………………………………………………………… 144 4.1 [Et4N]2[SFe3(CO)9] (1) 的合成及化性研究…………………… 144 4.2 [Et4N]2[SFe3(CO)9] (1) 與 HCoCCH2Br 的相關反應探討…... 147 4.3 [Et4N]2[Bi4Fe4(CO)13] 與金屬羰基化合物的反應探討……….. 153 4.4 E-Cr-CO (E = As,Sb,Bi) 系統的反應探討………………… 154 4.5 具 SFe3 架構之化合物的結構討論…………………………… 164 4.6 具 SFe2Ru3 架構之化合物的結構討論……………………….. 166 4.7 含不飽和有機配位基的 S-Fe 化合物結構討論……………… 167 4.8 [Et4N][Bi4Fe3Mn(CO)14] (11) 的結構討論…………………….. 181 4.9 E-Cr-CO (E = As,Sb,Bi) 化合物的結構探討…………….... 183 5. 結論……………………………………………………………... 189 6. 參考資料………………………………………………………... 192 7. 附圖……………………………………………………….…….. 204 8. 附表……………………………………………………………... 281

6. 參考資料
1. Lin, Y. C.; Lu, K. L. Chemistry 1991, 49, 303.
2. Ziegler, T.; Versluis, L. Adv. Chem. Ser., 1992, 75, 230.
3. Fachinetti, G. et al., Inorg. Chem. 1994, 33, 1719.
4. (a) Nicholls, J. N. Polyhedron 1984, 3, 1307. (b) Whitmire, K. H.;
Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472
5. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
6. Shieh, M.; Shieh, M.-H.; Tsai, Y.-C.; Ueng, C.-H. Inorg. Chem.
1998, 34, 5088.
7. (a) Whitmire, K. H.; Lagrone, C. B.; Churchill, M. R. Inorg. Chem.
1995, 34, 5088. (b) Churchill, M. R.; Fettinger, J. C. J. Organomet.
Chem. 1986, 303, 99.
8. Roof, L. C.; Pennington, W. T.; Kolis, J. W. Angew. Chem. Int. Ed.
Engl. 1992, 31, 913.
9. Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31,
2056.
10. Hung, S.-P.; Kanatzids, M. G. Inorg. Chem. 1993, 32, 821.
11. Shieh, M.; Sheu, C.-M.; Ho, L.-F.; Cherng, J.-J.; Jang, L.-F.; Ueng,
C.-H. Inorg. Chem. 1996, 35, 5504.
12. (a) Shieh, M.; Liou, Y. Inorg. Chem. 1993, 32, 2212. (b) Shieh, M.;
Liou, Y.; Jeng, B.-W. Organometallics 1993, 12, 4926.
13. Shieh, M.; Tsai, Y.-C.; Cherng, J.-J.; Shieh, M.-H.; Chen, H.-S.;
Ueng, C.-H. Organometallics 1997, 16, 456.
14. Whitmire, K. H.; van Hal, J. W. Organometallics 1998, 17, 5197.
15. Roof, L. C.; Smith, D. M.; Drake, D. W.; Pennington, W. T.; Kolis, J.
W. Inorg. Chem. 1995, 34, 337.
16. 謝明惠,程建彰,未發表的結果。
17. (a) Marko, L.; Takacs, J.; Papp, S.; Marko-Monostory, B. Inorg.
Chim. Acta 1980, 45, L189. (b) Marko, L.; Takacs, J. Inorg. Synth
1989, 26, 243. (c) Fischer, K.; Deck, W.; Schwarz, M.; Vahrenkamp, H. Chem. Ber. 1985, 118, 4946. (d) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392.
18. Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals; Wiley:New York, 1994,; p112.
19. Doherty, S.; Corrigan, J. F.; Carty, A. J. Adv. Organomet. Chem.
1995, 37, 39.
20. Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G.; Bresciani-
Pahor, N. J. Am. Chem. Soc. 1989, 111, 6890.
21. Yamazaki, S.; Deeming, A. J.; Speel, D. M. Organometallics, 1998,
17, 775.
22. (a) Aime, S.; Tiripicchio, A.; Camellini, M. T.; Deeming, A. J. Inorg.
Chem. 1981, 20, 2027. (b) Aime, S.; Osella, D.; Arce, A. J. ;
Deeming, A. J.; Hursthouse, M. B. Galas, A. M. R. J. Chem. Soc.,
Dalton Trans. 1986, 1459.
23. Adams, R. D.; Chen, G.; Tanner, J. T.; Yin, J. Organometallics 1990,
9, 595.
24. 陳鴻生,國立台灣師範大學碩士論文,1997。
25. 葉秀娟,國立台灣師範大學碩士論文,1995。
26. (a) Whitmire, K. H.; Churchill, M. R.; Fettinger, J. C. J. Am. Chem.
Soc. 1985, 107, 1056. (b) Whitmire, K. H.; Albright, T. A.; Kang,
S.-K.; Churchill, M. R.; Fettinger, J. C. Inorg. Chem. 1986, 25, 2799.
27. (a) Luo, S.; Whitmire, K. H. Inorg. Chem. 1989, 28, 1424. (b)
Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, B. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Inorg. Chem. 1987, 26, 2798. (c) Whitmire, K. H.; Leigh, J. S.; Luo, S.-F.; Shieh, M.;
Fabiano, M. D. New. J. Chim. 1988, 12, 397. (d) Luo, S.-F.; Whitmire, K. H. J. Organomet. Chem. 1989, 376, 297.
28. (a) Huttner, G.; Schmid, H.-G. Angew. Chem. Int. Ed. Engl. 1975,
14, 433. (b) Huttner G.; Seyerl, J. V.; Marsili, M.; Schmid, H.-G.
Angew. Chem. Int. Ed. Engl. 1975, 14, 434. (c) Seyerl, J. V.;
Sigwarth, B.; Schmid, H.-G.; Mohr, G.; Frank, A.; Marsili, M.;
Huttner, G. Chem. Ber. 1981, 114, 1392.
29. Weber, U.; Zsolnai, L.; Hunter,G. J. Organomet. Chem. 1984, 260,
281.
30. Huttner, G.; Weber, U.; Sigwarth, B.; Scheidsteger, O.; Lang, H.;
Zsolnai, L. J. Organomet. Chem. 1985, 282, 331.
31. (a) Fischer, E. O.; Richter, K. Chem. Ber. 1976, 109, 1140. (b)
Benlian, D.; Bigorane, M. Bull. Soc. Chim. Fr. 1963, 1583. (c)
Carty, A. J.; Taylor, N. J.; Coleman, A. W.; Lappert, M. F. J. Chem.
Soc., Chem. Commun. 1979, 639. (d) Schumann, H.; Breung, H. J.
J. Organomet. Chem. 1975, 87, 83.
32. Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1995, 34, 1542.
33. 黃國智,國立台灣師範大學博士論文,1998。
34. Simmon, M. G.; Merril, C. L.; Wilson, L. J.; Bottomley, L. A.;
Kadish, K. M. J. Chem. Soc. Dalton Trans. 1980, 1827.
35. Drew, D.; Darensbourg, J. D.; Darensbourg, M. Y. Inorg. Chem.
1975, 14, 1579.
36. Whitmire, K. H.; Lee, T. R.; Lewis, E. S. Organometallics 1986, 5,
987.
37. Gordon, A. J.; Ford, R. A. The Chemist's Compasion; Wiley: New
York, 1972; p445.
38. (a) Abel, E. W.; Butler, I. S.; Reid. J. G. J. Chem. Soc. 1963, 2068. (b) Fischer; E. O.; Ofele, K. Z. Naturforsch. 1959, 14b, 763. (c) Fischer; E. O.; Ofele, K. Chem. Ber. 1960, 93, 1156.
39. Schauer, C. K.; Voss, E. J.; Sabat, M.; Shriver, D. F. J. Am. Chem.
Soc. 1989, 111, 7662.
40. Huheey, J. e.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry Principles of Structure and Reactivity, 4nd, Haper Collins.
41. (a) Kreb, B.; Hucke, M.; Mrendel, C. J. Angew. Chem. Int. Ed. Engl. 1982, 21, 445. (b) Corbett, J. D. J. Inorg. Nucl. Chem. Lett. 1967, 3, 173. (c) Corbett, J. D. Inorg. Chem. 1968, 7, 198. (d) Day, C.; Glaser, R.; Shimomura, N.; Takamuku, A.; Ichikawa, K. Chem. Eur. J. 2000, 6, 1078. (e) Curka, P.; Barrett, C. S. Acta Crystallpgr. 1962, 15, 865.
42. Takacs, J.; Marko, L. Transition Met. Chem. 1985, 10, 21. (b) Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1983, 22, 1339.
43. Bachman, R. E.; Whitmire, K. H.; van Hal, J. Organometallics 1995, 14, 1792.
44. Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35.
45. Vahrenkamp, H. Angew. Chem. Int. Ed. Engl. 1975, 14, 322.
46. (a) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95. (b) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1987, 26, 2807. (c) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1986, 25, 4460. (d) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1986, 25, 4514.
47. Horwitz, C. P.; Shriver, D. F. Adv. Organomet. Chem. 1984, 23, 219.
48. Adams, R. D.; Babin, J. E.; Natarajan, K. J. Am. Chem. Soc. 1986, 108, 3518.
49. Adams, R. D.; Babin, J. E.;Wang, J.-G. Polyhedron 1989, 8, 2351.
50. Adams, R. D.; Babin, J. E.; Natarajan, K.; Tsai, M.; Wang, J. G. Inorg. Chem. 1987, 26, 3708.
51. Newton, M. G.; Pantaleo, N. S.; King, R. B.; Chu, C.-K. J. Chem. Soc. Chem. Commun. 1979, 10.
52. Mitsudo, T.-a.; Watanabe, H.; Sasaki, T.; Takegami, Y.; Watanabe, Y.; Kafuku, K.; Nakatsu, K. Organometallics 1989, 8, 368.
53. Carbtree, R. H. The Organometallic Chemistry of The Transition metals, p274, 2nd.
54. Semmelhack, M. F.; Tamura, R. J. Am. Chem. Soc. 1983, 105, 4099.
55. Arif, A. M.; Cowley, A. H.; Norman, N. C.; Pakulski, M. Inorg. Chem. 1986, 25, 4836.
56. Leigh, K. S.; Whitmire, K. H. Angew. Chem. Int. Ed. Engl. 1988, 27, 396.
57. Herrmann, W. A.; Koumbouris, B.; Zahn, T.; Ziegler, M. L. Angew. Chem. Int. Ed. Engl. 1984, 23, 812.
58. (a) Bachman, R. E.; Miller, S. K.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2075. (b) Bachman, R. E.; Miller, S. K.; Whitmire, K. H. Organometallics 1995, 14, 796.
59. Henderson, P.; Rossignoli, M.; Burns, R. C.; Scudder, M. L.; Craig, D. C. J. Chem. Soc. Dalton Trans. 1994, 1641.
60. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 1011.
61. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5721.
62. (a) Kao, S. C.; Darensbourg, M. Y. Organometallics 1984, 3, 646. (b) Kao, S. C.; Gaus, P. L.; Youngdahl, K.; Darensbourg, M. Y. Organometallics 1984, 3, 1601.
63. von Seyerl, J.; Huttner, G. Angew. Chem., Int. Ed. Engl. 1979, 18, 233.
64. (a) Fischer, K.; Deck, W.; Schwarz, M.; Vahrenkamp, H. Chem. Ber. 1985, 118, 4946. (b) Al-Ani, F. T.; Hughes, D. L.; Pickett, C. J. J. Organomet. Chem. 1986, 307, C31.
65. 蔡易州,國立台灣師範大學碩士論文,1994。
66. (a) Winter, A.; zsolnai, L.; Hunter, G. Chem. Ber. 1982, 115, 1286. (b) Winter, A.; zsolnai, L.; Hunter, G. J. Organomet. Chem. 1983, 409.
67. Karet, G. B.; Stern, C. L.; Norton, D. M.; Shriver, D. F. J. Am. Chem. Soc. 1993, 115, 9979.
68. Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965, 4, 1.
69. Wei, C. H.; Dahl, L. F. Inorg. Chem. 1963, 2, 328.
70. Coleman, J. M.; Wojcicki, A.; Pollick, P. J.; Dahl, L. F. Inorg. Chem. 1967, 6, 1236.
71. Voss, E. J.; Stern, C. L.; Shriver, D. F. Inorg. Chem. 1994, 33, 1087.
72. Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655.
73. Boyar, E.; Deeming, A. J.; Felix, M. S. B.; Kabir, S. E.; Adatia, T.; Bhusate, R.; Mcpartlin, M.; Powell, H. R. J. Chem. Soc. Dalton Trans. 1989, 5.
74. Schmid, G. Angew. Chem. Int. Ed. Engl. 1978, 17, 392.
75. (a) Riely, P. E.; Davis, R. E.; Allison, N. T.; Jones, W. M. Inorg. Chem. 1982, 21, 1321. (b) Huttner, G.; Gartzke, W. Chem. Ber. 1972, 105, 2714. (c) Findley, P. F.; Mills, O. S. J. Chem. Soc. A 1969, 1279.
76. Hoffmann, K.; Weiss, E. J. Organomet. Chem. 1977, 128, 225.
77. Seyferth, D.; Hoke, J. B.; Dewan, J. C. Organometallics 1987, 6, 896.
78. Dettlaf, G.; Behrens, U.; Weiss, E. Chem. Ber. 1978, 111, 3019.
79. Mitsudo, T.-a.; SasaKi, T.; Watanabe, Y.; Takegami, Y. J. Chem. Soc. Chem. Commun. 1978, 252.
80. Binger, P.; Cetinkaya, B.; Kruger, C. J. Organomet. Chem. 1978, 159, 63.
81. Alcock, N. W.; Richards, C. J.; Thomas, S. E. Organometallics 1991, 10, 231.
82. Churchill, M. R.; Chang, S. W. Y. Inorg. Chem. 1975, 14, 1680.
83. Connor, J. A.; Jones, E. M. J. Chem. Soc. A 1971, 1974.
84. Casey, C. P.; Brunsvold, W. R. Inorg. Chem. 1977, 16, 391.
85. (a) Wood, C. d.; Mclain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3201. (b) Casy., C. P.; Polichonwski, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282. (c) Fischer, H.; Dotz, K. H. Chem. Ber. 1980, 113, 193.
86. Mayr, A.; Asaro, M. F.; Glines, T. J. J. Am. Chem. Soc. 1987, 109, 2215.
87. Mitsudo, T. Ishihhara, A.; Kadokura, M.; Watanabe, Y. Organometallics 1986, 5, 238.
88. Mitsudo, T. Watanabe, H.; Sasaki, T.; Watanabe, Y.; Takegami, Y.; Kafuku, K.; Kinoshita, K.; Nakatsu, K. J. Chem. Soc. Chem. Commun. 1981, 22.
89. Mitsudo, T. Watanabe, H.; Watanabe, Y.; Takegami, Y.; J. Organomet. Chem. 1981, 214, 87.
90. Klimes, J.; Weiss, E. Angew. Chem. Int. Ed. Engl. 1982, 21, 205.
91. Park, J.; Kang, S.; Whang, D. Kim, K. Organometallics 1991, 10, 3413.
92. Nakatsu, K.; Mitsudo, T.-a.; Nakanishi, H.; Watanabe, Y.; Takegami, Y. Chem. Lett. 1977, 1447.
93. Schubert, U. Coord. Rev. 1984, 261-280.
94. Marko, L.; Madach, T.; Vahrenkamp, H. J. Organomet. Chem. 1980, 190, C67.
95. Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965, 4, 493.
96. Bose, K. S.; Sinn, E.; Averill, B. A. Organometallics 1984, 3, 1126.
97. Lilley, G. L.; Sinn, E.; Averill, B. A. Inorg. Chem. 1986, 25, 1073.
98. Koerner von Gustorf, E. A.; Grevels, F. W.; Fischer, I.; Eds. "The Organic Chemistry of Iron" Academic Press: New York, 1978; Vol. 1.
99. Marko, L.; Marko-Monostory, b.; Madach, T.; Vahrenkamp, H. Angew. Chem. Int. Ed. Engl. 1980, 19, 226.
100. Wallis, J. M.; Muller, G.; Schmidbaur, H. Inorg. Chem. 1987, 26,
458.
101. Jones, R. A.; Whittlesey, B. R. Organometallics 1984, 3, 469.
102. Lang, H.; Huttner, G.; Sigwarth, B.; Jibril, I.; Zsolnai, L.; Orama, O.
J. Organomet. Chem. 1986, 304, 137.
103. Keng, R.-S.; Lin, Y.-C. Organometallics 1990, 9, 289, and references
therein.Rumin, R.; Petillon, F.; Manojlovic-Muir, Lj.; Muir, K. W.Organometallics 1990, 9, 944.
104. Whitmire, K. H.; Shieh, M.; Cassidy, J.; Inorg. Chem. 1989, 28, 3164.
105. Arif, A. M.; Cowley, A. H.; norman, N. C.; Pakulski, M. J. Am.
Chem. Soc. 1985, 107, 1062.

下載圖示
QR CODE