研究生: |
許文騰 Hsu, Weng-Teng |
---|---|
論文名稱: |
磷化過程對氫氣生成反應在金屬磷化物上的影響 The effect of phosphating process for hydrogen evolution reaction on metal phosphides |
指導教授: |
王禎翰
Wang, Jeng-Han |
口試委員: |
李積琛
Lee, Chi-Shen 羅夢凡 Luo, Meng-Fan |
口試日期: | 2021/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 析氫反應 、磷化鈷 、次亞磷酸鈉 、電負度 、表面元素比例 |
英文關鍵詞: | Hydrogen evolution reaction(HER), Cobalt phosphide, Sodium phosphinate, electronnegativity, surface element ratio |
研究方法: | 實驗設計法 、 行動研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202100970 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於析氫反應為一種有效產生再生氫氣燃料之方法且被研究出能在基礎上解決由化石燃料引發的能源危機,此論文主要探討如何最佳化磷化物以獲得最高效之析氫反應活性。合成金屬磷化物首先經過金屬氯化物和草酸之共沉澱並鍛燒 300oC 1 小時;金屬磷化物則透過金屬氧化物與次亞磷酸鈉而進行的氣固反應控制。再透過高解析感應耦合電漿質譜分析儀、掃描式電子顯微鏡、能量散射光譜儀、X 光粉末繞射分析儀、X 光光電子能譜儀鑑定金屬磷化物之組成、晶面結構與氧化態;將其附載在旋轉電極上並透過三電極系統得知其析氫反應活性。此論文最初以不同金屬磷化物之測試得知磷化鈷之析氫效果最佳,並透過熱處理步驟最佳化磷化物之生成。250 與 350oC 為兩重要溫度,分別生成 PH3和置換氧,能決定性的控制磷化鈷之品質。透過升溫速率和持溫時間能找出適當的磷化鈷生成擁有最佳之析氫反應活性;過短或過長之熱處理步驟皆會導致磷化不完全或過度氧化的問題。因此,此論文找出在升溫速率 5oC/分鐘、持溫時間 250/350oC 在 160 分鐘/2 小時、320 分鐘/2 小時能獲得擁有最佳產氫反應活性之高品質磷化鈷,擁有 59、77 mV/dec 的 Tafel slope 與在-189、191 mV 下達到10 mA/cm2 之效果。另外,改變前驅物使用硝酸鈷能發現氯化物為更好的選擇。
Hydrogen evolution reaction (HER) is an efficient method to produce renewable hydrogen fuel and has been extensively studied to fundamentally solve the energetic problems caused from the fossil fuels. The present study aims to optimize the metal phosphide catalysts for the best HER efficiency.
In the synthetic process of metal phosphides starts from the metal oxide (CoO) formation by co-precipitation of metal oxalate and chloride and sintering at 300OC for an hour; the metal phosphides are further fabricated in the solid reaction by controlled heating of mixtures of the synthesized oxides and sodium hypophosphite (NaH2PO2). The fabricated phosphides are then characterized by ICP-MASS, EDX, SEM, XRD and XPS for their compositions, crystal structures and oxidation states; they are loaded onto a rotating disk electrode and examined by a three-electrode system for their HER activity.
Our study initially examined several metal phosphides and found that CoP shows the best HER activity among them. Furthermore, we focused on optimize the heating process for the phosphide formation. Two important temperatures of 250 and 350OC for PH3 formation and reaction with oxide, respectively, decidedly control the quality of CoP. The temperature heating up speed and duration are extensively examined to find proper CoP formation with the best HER activity; shorter or longer heating processes cause insufficient phosphide formation or over oxidation problems. As a result, our study finds that the heating up speed at 5oC/ min and duration of 250/350OC at 160 minutes/2 hours, 320 minutes/2 hours forms the high quality of CoP with the best HER activity of -189, 191 mV in overpotential and 59, 77 mV/dec in Tafel slope. Altered precursor of cobalt nitride is additionally examined and finds that the precursor of chloride is the better choice.
1. Chorkendorff, I. and J.W. Niemantsverdriet, Concepts of modern catalysis and kinetics. 2017: John Wiley & Sons.
2. Lu, D., et al., Preparation and catalytic properties of porous CoP nanoflakes via a low-temperature phosphidation route. CrystEngComm, 2016. 18(29): p. 5580-5587.
3. Wang, M., et al., Mesoporous Mn-doped FeP: facile synthesis and enhanced electrocatalytic activity for hydrogen evolution in a wide pH range. ACS Sustainable Chemistry & Engineering, 2019. 7(14): p. 12419-12427.
4. Pan, Y., et al., Metal doping effect of the M–Co2P/Nitrogen-Doped carbon nanotubes (M= Fe, Ni, Cu) hydrogen evolution hybrid catalysts. ACS applied materials & interfaces, 2016. 8(22): p. 13890-13901.
5. Wu, F., et al., In situ catalytic etching strategy promoted synthesis of carbon nanotube inlaid with ultrasmall FeP nanoparticles as efficient electrocatalyst for hydrogen evolution. ACS Sustainable Chemistry & Engineering, 2019. 7(15): p. 12741-12749.
6. Tian, L., X. Yan, and X. Chen, Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catalysis, 2016. 6(8): p. 5441-5448.
7. Li, H., et al., Hollow bimetallic M-Fe-P (M= Mn, Co, Cu) nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(41): p. 22806-22815.
8. Ge, Y., et al., Urchin-like CoP with controlled manganese doping toward efficient hydrogen evolution reaction in both acid and alkaline solution. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 15162-15169.
9. Du, Y., et al., Controllable synthesized CoP-MP (M= Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2019. 44(36): p. 19978-19985.
10. Ivanovskaya, A., et al., Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. Langmuir, 2013. 29(1): p. 480-492.
11. Miao, C., et al., Facile Electrodeposition of Amorphous Nickel/Nickel Sulfide Composite Films for High-Efficiency Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021. 4(1): p. 927-933.
12. Wu, L., et al., Cobalt Sulfide Nanotubes (Co9S8) Decorated with Amorphous MoS x as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Nano Materials, 2018. 1(3): p. 1083-1093.
13. Anantharaj, S., et al., Recent trends and perspectives in electrochemical water 61
splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. Acs Catalysis, 2016. 6(12): p. 8069-8097.
14. Liu, G., et al., Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery. Journal of Power Sources, 2021. 486: p. 229351.
15. Chen, L., et al., Cobalt layered double hydroxides derived CoP/Co 2 P hybrids for electrocatalytic overall water splitting. Nanoscale, 2018. 10(45): p. 21019- 21024.
16. Ma, J., et al., Polyaniline derived N‐doped carbon‐coated cobalt phosphide nanoparticles deposited on N‐doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small, 2018. 14(2): p. 1702895.
17. Liu, Q., et al., Carbon nanotubes decorated with CoP nanocrystals: a highly active non‐noble‐metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014. 53(26): p. 6710-6714.
18. Sumboja, A., et al., One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium. ACS applied materials & interfaces, 2018. 10(18): p. 15673-15680.
19. El-Refaei, S.M., P.A. Russo, and N. Pinna, Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Applied Materials & Interfaces, 2021.
20. Li, S., et al., Doping β-CoMoO4 nanoplates with phosphorus for efficient hydrogen evolution reaction in alkaline media. ACS applied materials & interfaces, 2018. 10(43): p. 37038-37045.
21. McCrory, C.C., et al., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013. 135(45): p. 16977-16987.
22. Jin, Z., P. Li, and D. Xiao, Metallic Co 2 P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting. Green Chemistry, 2016. 18(6): p. 1459-1464.
23. Callejas, J.F., et al., Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chemistry of Materials, 2015. 27(10): p. 3769-3774.
24. Shu, Z., et al., Room-temperature catalytic removal of low-concentration NO over mesoporous Fe–Mn binary oxide synthesized using a template-free approach. Applied Catalysis B: Environmental, 2013. 140: p. 42-50.
25. Hua, Y., et al., Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting. Journal of Energy Chemistry, 2019. 37: p. 1-6.62
26. Hu, G., Q. Tang, and D.-e. Jiang, CoP for hydrogen evolution: implications from hydrogen adsorption. Physical Chemistry Chemical Physics, 2016.18(34): p. 23864-23871.