簡易檢索 / 詳目顯示

研究生: 蕭廷江
Hsiao, Ting-Chiang
論文名稱: 除濕機的空氣分配器開發及性能研究
Development and Performance Research for Dehumidifier with Air-Distributor
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 回風風速分佈空氣分配器能源因數除濕能力除濕機
英文關鍵詞: air-distributors (ADs), dehumidification capacity, dehumidifier, energy factor (EF), return air-velocity distribution
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.032.2018.E01
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以除濕機回風風速分佈狀態開發與設計出提升除濕機性能的空氣分配器。空氣分配器是以孔徑變化產生不同阻力的原理分配回風氣流以獲得流動均勻的氣流來提高熱交換效率。使用雷射切割機加工鋁板製作出分別由3級、6級與11級孔徑分層組合而成的三種空氣分配器(AD1-AD3)並實際安裝於除濕機進行除濕性能比較。除濕機的性能實驗參照CNS 12492標準條件進行。此外再加上CNS 12492標準中之過負載測試的環境條件進行實驗。研究結果顯示在標準及過負載環境條件下,AD1及AD3空氣分配器都可以明顯的提升除濕機的除濕能力及能源因數值,僅有AD2空氣分配器在標準條件下的除濕能力及能源因數值略低於原機。除濕機性能提升最顯著的為AD1空氣分配器,其除濕能力及能源因數值(EF)在標準條件下的增進率分別為5.44%及4.25%;在過負載溫濕度條件下的增進率分別為5.97%及5.46%。因此本研究所提出之AD1空氣分配器為最有效提升除濕機性能及用電效率的配置設計。

    In this study, the air-distributors (ADs) were developed based on the return air-velocity distribution of the dehumidifier to improve the performance of dehumidifier. The ADs distributed the return air flow based on the principle of different resistance due to the change of the pore size to obtain a uniform air-flow to improve the heat exchange efficiency. The ADs used laser cutting to process aluminum plates to produce 3, 6 and 11 pore size layer configurations (AD1-AD3) and were actually installed in the dehumidifier to compare the dehumidification performance. The dehumidifier performance test was conducted in accordance with CNS 12492 standard conditions. In addition, the environmental condition of the overload test in the CNS 12492 was used for experiments. The results showed that the ADs could significantly enhance the dehumidification capacity and energy factor (EF), except of AD2 exhibited slightly lower than that of original dehumidifier at the standard test condition. The dehumidifier with AD1 had the highest enhanced ratio of dehumidification capacity and EF. The enhanced ratio of dehumidification capacity and EF were 5.44% and 4.25% at the standard test condition, and 5.97% and 5.46% at the overload test condition that compared with the original dehumidifier, respectively. Therefore, AD1 was developed in this study could effectively improve the dehumidification capacity and efficiency of the dehumidifier.

    摘要 i Abstract ii 目次 iii 表次 v 圖次 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程 3 1.4 論文架構 5 1.5 文獻回顧 6 第二章 理論分析與文獻探討 9 2.1 除濕系統 9 2.1.1 除濕系統簡介 9 2.1.2 濕度調節之熱力性質分析 12 2.1.3 除濕機性能測試標準 14 2.1.4 相關性能提升技術 15 2.2 蒸氣壓縮循環冷凍系統 17 2.2.1 理想蒸氣壓縮冷凍循環系統 18 2.2.2 實際蒸氣壓縮冷凍循環系統 20 2.2.3 蒸氣壓縮冷凍循環系統之熱力性質分析 22 2.3 空氣流動與分佈理論 24 2.3.1 氣體的流動狀態 24 2.3.2 氣流的壓降 26 2.3.3 氣流的阻力與分配 27 第三章 實驗設計 29 3.1 實驗系統 30 3.1.1 環境控制系統 30 3.1.2 實驗除濕機 32 3.1.3 相關性能量測裝置 33 3.2 除濕機性能實驗方法與步驟 35 3.3 空氣分配器之設計 37 3.4 量測儀器與設備 42 3.5 數據處理 51 3.6 誤差分析 52 第四章 結果與討論 55 4.1 空氣側狀態點相關性質比較 56 4.2 空氣側性能比較 61 4.3 冷凍系統側狀態點性質比較 66 4.4 節能及減碳效益評估 70 第五章 結論與建議 73 5.1 結論 73 5.2 建議 75 參考文獻 77 符號彙整 81 作者簡介 85

    [1] 洪瑞亨,“我國再生能源發展之情境分析與發電量預測”,台灣大學工業工程學研究所,碩士論文,2017年1月。
    [2] 經濟部能源局,“能源產業技術白皮書”,2016。
    [3] 張慧君,“室內溫度、濕度與風速對29~60歲人員感知與舒適度之研究-以人員閱讀狀態為例”,樹德科技大學建築與環境設計研究所,碩士論文,2009年1月。
    [4] 趙偉杰、張立志、裴麗霞,“新型除濕技術的研究進展”,化工進展,第1710-1718頁,第27卷,第11期,2008年11月。
    [5] 交通部中央氣象局,台灣氣候特徵簡介。取自https://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1.html
    [6] 交通部中央氣象局,台灣相對濕度月平均。取自https://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_rh.htm
    [7] 陳文亮、江雅媚、許夢吟,“影響家電除濕機產品設計因素之研究”,樹德科技大學學報,第39-51頁,第16卷,第1期,2014年1月。
    [8] 交通部中央氣象局,大氣概述。取自https://www.cwb.gov.tw/V7/knowledge/encyclopedia/me013.htm
    [9] 張志彰、賴慶智、黃馨儀、吳信賢,“薄膜式電滲透除濕技術”,燃燒季刊,第41-59頁,第82期,2013年8月。
    [10] 行政院主計總處,“住宅部門指標表“。取自https://www.moeaboe.gov.tw/ecw/populace/content/wHandMenuFile.ashx?file_id=1326。
    [11] 工業技術研究院,除濕機「容許耗用能源基準與能源效率分級標示事項、方法及檢查方式」修訂草案廠商座談會簡報資料。取自https://ranking.energylabel.org.tw/_upload/gen/news/179/file1/%E9%99%A4%E6%BF%95%E6%A9%9FMEPS%E5%88%86%E7%B4%9A%E6%A8%99%E7%A4%BA%E4%BF%AE%E8%A8%821050714%E5%BB%A0%E5%95%86%E5%BA%A7%E8%AB%87%E6%9C%83_%E4%BF%AE%E8%A8%82%E7%89%88.pdf。
    [12] 經濟部能源局,105年度電力排放係數。取自https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=114。
    [13] 經濟部國家標準檢驗局,CNS12492除濕機試驗標準,2017。
    [14] 何建國、劉貴珊、張海紅、詹志彪與韓小珍,“節能型冷卻除濕機的研製”,農業科學研究,第25-27頁,地27卷,第1期,2006年3月。
    [15] M. R. Kærn, W. Brix, B. Elmegaad, L. F. S. Larsen, “Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators”, International Journal of Refrigeration, vol. 34, pp. 696-706, May 2011.
    [16] C. K. Bach, E. A. Groll, J. E. Braun, W. T. Horton, “Mitigation of air flow maldistribution in evaporators”, Applied Thermal Engineering, vol. 73, pp. 879-887, Dec. 2014.
    [17] M. K. Choi, Y. B. Lim, H. W. Lee, H. Jung, J. W. Lee, “Flow uniformizing distribution panel design based on a non-uniform porosity distribution”, Journal of wind Engineering and Industrial Aerodynamics, vol. 130, pp. 41-47, Jul. 2014.
    [18] W. Yaïci, M. Ghorab, and E. Entchev, “3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-and-tube laminar heat exchangers”, International Journal of Heat and Mass Transfer, vol. 74, pp. 490-500, Jul. 2014.
    [19] P. Blecich, “Experimental investigation of the effects of airflow nonuniformity on performance of a fin-and-tube heat exchanger”, International Journal of Refrigeration, vol. 59, pp. 65-74, Nov. 2015.
    [20] W. Yaïci, M. Ghorab, E. Entchev, “3D CFD study of the effect of inlet air flow maldistribution on plate-fin-tube heat exchanger design and thermal–hydraulic performance”, International Journal of Heat and Mass Transfer, vol. 101, pp. 527-541, Oct. 2016.
    [21] W. J. Lee, H. J. Kim, J. H. Jeong, “Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump”, International Journal of Heat and Mass Transfer, vol. 98, pp. 462-471, Jul. 2016.
    [22] A. M. Bahman, E. A. Groll, “Application of interleaved circuitry to improve evaporator effectiveness and COP of a packaged AC system”, International Journal of Refrigeration, vol. 79, pp. 114-129, Jul. 2017.
    [23] 李政毅,“窗型空調機的空氣分配器開發及性能之研究”,國立臺灣師範大學工業教育研究所,碩士論文,2017年7月。
    [24] 維基百科,除濕機。取自https://zh.wikipedia.org/wiki/%E9%99%A4%E6%BF%95%E6%A9%9F
    [25] Rosahl, Rosahl micro-dehumidifiers. From
    https://www.micro-dehumidifier.com/rosahl/how-does-rosahl-work-3/
    [26] 台灣日立江森自控股份有限公司,何謂變頻式空調機。取自http://www.taiwan-hitachi.com.tw/technique/technique-4.aspx?t_id=9&id=76
    [27] 台灣日立江森自控股份有限公司,變頻機與傳統機之差異。取自http://www.taiwan-hitachi.com.tw/technique/technique-4.aspx?t_id=9&id=77
    [28] 黃健原,“物聯網在智慧住宅節能與安全之應用”,台北科技大學土木工程系土木與防災研究所,碩士論文,2016年。
    [29] J. Knissel, D. Peußner, “Energy efficient heat exchanger for ventilation systems”, Energy and Buildings, vol. 159, pp. 246-253, Jan. 2018.
    [30] X. Song, D. Huang, X. Liu, “Effect of non-uniform air velocity distribution on evaporator performance and its improvement on a residential air conditioner”, Applied Thermal Engineering, vol. 40, pp. 284-293, Jul. 2012.
    [31] 維基百科,鋁。取自https://zh.wikipedia.org/wiki/%E9%93%9D
    [32] 維基百科,雷諾數。取自https://zh.wikipedia.org/wiki/%E9%9B%B7%E8%AF%BA%E6%95%B0
    [33] 杜鳳棋、王鴻烈,流體力學,高立圖書,2010年7月。
    [34] P. K. Swamee, A. K. Jain, “Explicit Equations for Pipe-flow Problems”, Journal of the Hydraulics Division, vol. 102, pp. 657-664, May. 1976.
    [35] 經濟部能源局,除濕機能源耗用量與其能源效率分級標示事項、方法及檢查方式。取自https://www.moeaboe.gov.tw/ecw/populace/Law/Content.aspx?menu_id=4384
    [36] 經濟部能源局,節能標章全球資訊網。取自http://www.energylabel.org.tw/purchasing/compare/dehumidifier.aspx

    無法下載圖示 本全文未授權公開
    QR CODE