研究生: |
王珮穎 Wang, Pei-Ying |
---|---|
論文名稱: |
虛擬實境中成人學習者與記憶之研究-以虛擬超市為例 Research on Adult Learners and Memory in Virtual Reality: A Case Study of a Virtual Supermarket |
指導教授: |
張振維
Chang, Chen-Wei |
口試委員: |
張振維
Chang, Chen-Wei 陳子樵 Chen, Tzu-Chiao 陳宇立 Chen, Yu-Li |
口試日期: | 2024/06/22 |
學位類別: |
碩士 Master |
系所名稱: |
社會教育學系 Department of Adult and Continuing Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 虛擬實境 、空間認知 、記憶召回 、科技感知 、尋路焦慮感 、大學科系 、認知記憶差異 |
英文關鍵詞: | Immersive Virtual Reality, Virtual Supermarket, Spatial Cognition, Memory Recall, Technological Perception, Route Anxiety, College Major |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400813 |
論文種類: | 學術論文 |
相關次數: | 點閱:226 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探索沉浸式虛擬實境 (VR) 對空間認知和記憶召回的影響,特別關注就讀不同大學科系學生之間的差異。本研究以虛擬超市作為研究的環境,測試受試者的空間認知和記憶方面的表現,並探討大學就讀文科或是理工醫科對這些表現的潛在影響。同時,透過量表調查受試者的方向感、尋路焦慮感和科技感知,包括:存在感、使用者經驗等因素,旨在深入了解其對記憶和空間認知的影響,並確定虛擬實境技術在心理認知相關領域的應用潛力。透過這項研究,期望更深入地瞭解虛擬實境技術對空間認知、記憶和空間焦慮的影響,以提供有價值的參考,促進虛擬實境系統設計之改進。
根據研究結果,受試者的記憶表現受到自由召回、延後召回和練習效應的影響。特別是文科受試者在超市商品的特定記憶上,比例顯著高於理工醫學科受試者。此外,文科受試者表現出較高的尋路焦慮感,但對虛擬實境系統的感知吸引力也較高。理工醫科和文科的受試者在數位裝置的使用量和偏好方面存在一定的差異趨勢。這些研究結果提供了深入洞察,說明了虛擬實境對文科或理工醫科學生空間認知、記憶召回和使用者體驗的具體影響。
綜合以上結果,這項研究有助於擴展人們對虛擬實境技術在教育、心理學等領域的應用理解,提供了深入洞察虛擬實境對文科及理工醫科學生的空間認知、記憶召回和使用者體驗的影響。藉由深入研究不同科系學生對虛擬實境的反應和表現,可以更好地設計和優化虛擬環境,促進學習、記憶和訓練效果。未來的研究可以進一步探索虛擬實境在不同專業領域的應用,以及其對不同群體的影響,從而推動該技術在各個領域的創新和發展。
This study aims to explore the impact of immersive virtual reality (VR) on spatial cognition and memory recall, with a specific focus on differences among university students majoring in different disciplines, particularly Liberal Arts and Science majors. The study utilizes a virtual supermarket environment to assess participants' spatial cognition and memory performance and investigates the potential influence of studying arts or sciences on these outcomes. Additionally, through surveys using scales to measure participants' sense of direction, wayfinding anxiety, and technology perception, including presence and user experience, the study seeks to gain deeper insights into the interaction between memory and spatial cognition and to determine the application potential of VR technology in related fields.
According to the research findings, participants' memory performance is influenced by free recall, delayed recall, and practice effects. Specifically, arts students exhibit significantly higher recall proportions for specific supermarket items compared to students in science and engineering disciplines. Additionally, arts students show higher levels of wayfinding anxiety but also greater attractiveness towards VR systems. There are observable trends in the usage and preferences of digital devices between science and arts students. These results offer profound insights, elucidating the specific impact of VR on spatial cognition, memory recall, and user experience among arts and science students.
In conclusion, this study contributes to expanding our understanding of the applications of VR technology in education, and psychology, providing deep insights into its effects on spatial cognition, memory recall, and user experience among Liberal Arts and Science majors. Future research can further explore the applications of VR in various professional domains and its impact on different demographic groups, thus driving innovation and development of this technology across diverse fields.
1. Atit, K., & Rocha, K. (2021). Examining the relations between spatial skills, spatial anxiety, and K-12 teacher practice. Mind, Brain, and Education, 15(1), 139–148. https://doi.org/10.1111/mbe.12274
2. Beltz, A. M., Kelly, D. P., & Berenbaum, S. A. (2020). Sex differences in brain and behavioral development. Neural Circuit and Cognitive Development (Second Edition), 2020, 585-638. https://doi.org/10.1016/B978-0-12-814411-4.00027-5
3. Bolter, J. D., Engberg, M., & MacIntyre, B. (2021). Reality media: Augmented and virtual reality. MIT Press.
4. Burgess, J., Gallagher, B., Jensen, D. D., & Levine, B. N. (2006). MaxProp: Routing for Vehicle-Based Disruption-Tolerant Networks. Infocom, vol.6. http://www2.ic.uff.br/~celio/classes/cmovel/slides/burgess-infocom-2006.pdf
5. Camina, E., & Güell, F. (2017). The neuroanatomical, neurophysiological and psychological basis of memory: Current models and their origins. Frontiers in pharmacology, 8, 260416. https://doi.org/10.3389/fphar.2017.00438
6. Casaletto, K. B., & Heaton, R. K. (2017). Neuropsychological assessment: Past and future. Journal of the International Neuropsychological Society, 23(9-10), 778-790. https://doi.org/10.1017/S1355617717001060
7. Chan, J. C., Manley, K. D., Davis, S. D., & Szpunar, K. K. (2018). Testing potentiates new learning across a retention interval and a lag: A strategy change perspective. Journal of Memory and Language, 102, 83-96. https://doi.org/10.1016/j.jml.2018.05.007
8. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and brain sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922
9. Davison, S. M. C., Deeprose, C., & Terbeck, S. (2018). A comparison of immersive virtual reality with traditional neuropsychological measures in the assessment of executive functions. Acta Neuropsychiatrica, 30(2), 79-89. https://doi.org/10.1017/neu.2017.14
10. Dehn, L. B., Piefke, M., Toepper, M., Kohsik, A., Rogalewski, A., Dyck, E., ... & Schäbitz, W. R. (2020). Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects. Topics in Stroke Rehabilitation, 27(6), 442-452. https://doi.org/10.1080/10749357.2020.1716531
11. Elkind, J. S., Rubin, E., Rosenthal, S., Skoff, B., & Prather, P. (2001). A simulated reality scenario compared with the computerized Wisconsin Card Sorting Test: An analysis of preliminary results. CyberPsychology & Behavior, 4(4), 489-496. https://doi.org/10.1089/109493101750527042
12. Eme, P.-E., & Marquer, J. (1999). Individual strategies in a spatial task and how they relate to aptitudes. European Journal of Psychology of Education, 14(1), 89–108. https://doi.org/10.1007/BF03173113
13. Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: spatial navition and beyond. Nature neuroscience, 20(11), 1504-1513. https://doi.org/10.1038/nn.4656
14. Faisal, A. (2017). Computer science: Visionary of virtual reality. Nature, 551, 298–299. https://doi.org/10.1038/551298a
15. Flavián, C., Ibáñez-Sánchez, S., & Orús, C. (2019). The impact of virtual, augmented and mixed reality technologies on the customer experience. Journal of business research, 100, 547-560. https://doi.org/10.1016/j.jbusres.2018.10.050
16. Gibeau, R. M., Maloney, E. A., Béland, S., Lalande, D., Cantinotti, M., Williot, A., ... & Cousineau, D. (2023). The correlates of statistics anxiety: Relationships with spatial anxiety, mathematics anxiety and gender. Journal of Numerical Cognition, 9(1), 16-43. https://doi.org/10.5964/jnc.8199
17. Guttentag, D. A. (2010). Virtual reality: Applications and implications for tourism. Tourism management, 31(5), 637-651. https://doi.org/10.1016/j.tourman.2009.07.003
18. Hassenzahl, M., & Tractinsky, N. (2006). User experience-a research agenda. Behaviour & information technology, 25(2), 91-97. https://doi.org/10.1080/01449290500330331
19. Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. https://doi.org/10.1016/S0160-2896(02)00116-2
20. Heilig, M. L. (1962). Sensorama simulator. US PAT. 3,050,870.
21. Heim, M. (1993). The essence of VR. Idealistic Studies, 23(1), 49-62. https://doi.org/10.5840/idstudies19932312
22. Kalakoski, V., & Saariluoma, P. (2001). Taxi drivers’ exceptional memory of street names. Memory & cognition, 29 (4), 634-638. https://doi.org/10.3758/BF03200464
23. Keefe, R. S., Davis, V. G., Atkins, A. S., Vaughan, A., Patterson, T., Narasimhan, M., & Harvey, P. D. (2016). Validation of a computerized test of functional capacity. Schizophrenia research, 175(1-3), 90-96. https://doi.org/10.1016/j.schres.2016.03.038
24. Kim, E., Han, J., Choi, H., Prié, Y., Vigier, T., Bulteau, S., & Kwon, G. H. (2021). Examining the academic trends in neuropsychological tests for executive functions using virtual reality: systematic literature review. JMIR Serious Games, 9(4), e30249. https://doi.org/10.2196/30249
25. Kolarik, B., & Ekstrom, A. (2015). The neural underpinnings of spatial memory and navigation. In Social Cognitive Neuroscience, Cognitive Neuroscience, Clinical Brain Mapping, 507-514. http://doi.org/10.1016/B978-0-12-397025-1.00277-3
26. Krokos, E., Plaisant, C., & Varshney, A. (2019). Virtual memory palaces: immersion aids recall. Virtual reality, 23 (1), 1-15. https://doi.org/10.1007/s10055-018-0346-3
27. Kuehn, E., Perez-Lopez, M. B., Diersch, N., Döhler, J., Wolbers, T., & Riemer, M. (2018). Embodiment in the aging mind. Neuroscience & Biobehavioral Reviews, 86, 207-225. https://doi.org/10.1016/j.neubiorev.2017.11.016
28. Lanier, J. (1992). Virtual reality: The promise of the future. Interactive Learning International, 8(4), 275-79. https://dl.acm.org/doi/10.5555/155259.155263
29. Laugwitz, B., Held, T., & Schrepp, M. (2008). Construction and evaluation of a user experience questionnaire. In HCI and Usability for Education and Work: 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2008, Graz, Austria, November 20-21, 2008. Proceedings 4 (pp. 63-76). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89350-9_6
30. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex roles, 30, 765-779. https://doi.org/10.1007/BF01544230
31. Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex roles, 47, 389-401. https://doi.org/10.1023/A:1021668724970
32. Lim, Y. Y., Prang, K. H., Cysique, L., Pietrzak, R. H., Snyder, P. J., & Maruff, P. (2009). A method for cross-cultural adaptation of a verbal memory assessment. Behavior Research Methods, 41, 1190-1200.Liu, T. C., Lin, Y. C., Wang, T. N., Yeh, S. C., & Kalyuga, S. (2021). Studying the effect of redundancy in a virtual reality classroom. Educational Technology Research and Development, 69 (2), 1183-1200. https://doi.org/10.3758/BRM.41.4.1190
33. Loureiro, S. M. C., Guerreiro, J., & Ali, F. (2020). 20 years of research on virtual reality and augmented reality in tourism context: A text-mining approach. Tourism management, 77, 104028. https://doi.org/10.1016/j.tourman.2019.104028
34. Madl, T., Chen, K., Montaldi, D., & Trappl, R. (2015). Computational cognitive models of spatial memory in navigation space: A review. Neural Networks, 65, 18-43. https://doi.org/10.1016/j.neunet.2015.01.002
35. Makransky, G., Lilleholt, L., & Aaby, A. (2017). Development and validation of the Multimodal Presence Scale for virtual reality environments: A confirmatory factor analysis and item response theory approach. Computers in Human Behavior, 72, 276-285. https://doi.org/10.1016/j.chb.2017.02.066
36. McKone, D., Haslehurst, R., and Steingoltz, M. (2016). Virtual and Augmented Reality Will Reshape Retail. Harvard Business Review.
37. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
38. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227. https://doi.org/10.1037/xge0000182
39. Mlinac, M.E., & Feng, M.C. (2016). Assessment of activities of daily living, self-care, and independence. Archives of Clinical Neuropsychology, 31 (6), 506–516. https://doi.org/10.1093/arclin/acw049
40. Montana, J. I., Tuena, C., Serino, S., Cipresso, P., & Riva, G. (2019) . Neurorehabilitation of spatial memory using virtual environments: a systematic review. Journal of clinical medicine, 8 (10) , 1516. https://doi.org/10.3390/jcm8101516
41. Montello, D. R., & Raubal, M. (2013). Functions and applications of spatial cognition. In D. Waller & L. Nadel (Eds.), Handbook of spatial cognition (pp. 249–264). American Psychological Association. https://doi.org/10.1037/13936-014
42. Moorhouse, N., tom Dieck, M. C., & Jung, T. (2018). Technological innovations transforming the consumer retail experience: A review of literature. Augmented Reality and Virtual Reality: Empowering Human, Place and Business, 133-143. https://doi.org/10.1007/978-3-319-64027-3_10
43. Neguț, A., Matu, S. A., Sava, F. A., & David, D. (2016). Virtual reality measures in neuropsychological assessment: a meta-analytic review. The Clinical Neuropsychologist, 30 (2), 165-184. https://doi.org/10.1080/13854046.2016.1144793
44. Newcombe, E. A., Camats-Perna, J., Silva, M. L., Valmas, N., Huat, T. J., & Medeiros, R. (2018). Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. Journal of neuroinflammation, 15 (1), 1-26. https://doi.org/10.1186/s12974-018-1313-3
45. Ouellet, E., Boller, B., Corriveau-Lecavalier, N., Cloutier, S., & Belleville, S. (2018). The Virtual Shop: A new immersive virtual reality environment and scenario for the assessment of everyday memory. Journal of neuroscience methods, 303, 126-135. https://doi.org/10.1016/j.jneumeth.2018.03.010
46. Pallavicini, F., Pepe, A., & Minissi, M. E. (2019). Gaming in virtual reality: What changes in terms of usability, emotional response and sense of presence compared to non-immersive video games?. Simulation & Gaming, 50(2), 136-159. https://doi.org/10.1177/1046878119831420
47. Penner, I. K., Schläfli, K., Opwis, K., & Hugdahl, K. (2009). The role of working memory in dichotic-listening studies of auditory laterality. Journal of clinical and experimental neuropsychology, 31(8), 959-966. https://doi.org/10.1080/13803390902766895
48. Pieri, L., Tosi, G., & Romano, D. (2023). Virtual reality technology in neuropsychological testing: A systematic review. Journal of neuropsychology, 17(2), 382-399. https://doi.org/10.1111/jnp.12304
49. Poeppel, D., Mangun, G. R., & Gazzaniga, M. S. (Eds.) (2020). The cognitive neurosciences. MIT Press. ISBN 978-0262043250.
50. Rand, D., Rukan, S. B. A., Weiss, P. L., & Katz, N. (2009). Validation of the Virtual MET as an assessment tool for executive functions. Neuropsychological rehabilitation, 19(4), 583-602. https://doi.org/10.1080/09602010802469074
51. Riva, G., & Serino, S. (2020). Virtual reality in the assessment, understanding and treatment of mental health disorders. Journal of clinical medicine, 9(11), 3434. https://doi.org/10.3390/jcm9113434
52. Rizzo, A. “S.”, & Koenig, S. T. (2017). Is clinical virtual reality ready for primetime? Neuropsychology, 31(8), 877–899. https://doi.org/10.1037/neu0000405
53. Rizzo, A. A., & Schultheis, M. T. (2002). Expanding the boundaries of psychology: The application of virtual reality. Psychological Inquiry, 13(2), 134-140. https://www.jstor.org/stable/1449171
54. Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological rehabilitation, 14(1-2), 207-239. https://doi.org/10.1080/09602010343000183
55. Roediger, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in cognitive sciences, 15(1), 20-27. https://doi.org/10.1016/j.tics.2010.09.003
56. Rothe, S., Schmidt, A., Montagud, M., Buschek, D., & Hußmann, H. (2021). Social viewing in cinematic virtual reality: a design space for social movie applications. Virtual Reality, 25(3), 613-630. https://doi.org/10.1007/s10055-020-00472-4
57. Sakai, H., Nagano, A., Seki, K., Okahashi, S., Kojima, M., & Luo, Z. (2018) . Development of a cognitive function test using virtual reality technology: examination in healthy participants. Aging, Neuropsychology, and Cognition, 25(4), 561-575. https://doi.org/10.1080/13825585.2017.1351916
58. Schug, M. G. (2016). Geographical cues and developmental exposure: navigational style, wayfinding anxiety, and childhood experience in the Faroe Islands. Human Nature, 27, 68-81. https://doi.org/10.1007/s12110-015-9245-4
59. Sherwood, L. (2015). Human physiology: from cells to systems. Cengage learning.
60. Shi, Y., Du, J., & Ragan, E. (2020). Review visual attention and spatial memory in building inspection: Toward a cognition-driven information system. Advanced Engineering Informatics, 44, 101061. https://doi.org/10.1016/j.aei.2020.101061
61. Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. https://doi.org/10.1098/rstb.2009.0138
62. Spiers, M. V., Sakamoto, M., Elliott, R. J., & Baumann, S. (2008) . Sex differences in spatial object-location memory in a virtual grocery store. Cyberpsychology & Behavior, 11(4), 471-473. https://doi.org/10.1089/cpb.2007.0058
63. Squire, L. R. (2009). Memory and brain systems: 1969–2009. Journal of Neuroscience, 29(41), 12711-12716. https://doi.org/10.1523/JNEUROSCI.3575-09.2009
64. Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
65. Stuchlik, A., Kubik, S., Vlcek, K., & Vales, K. (2014). Spatial navigation: implications for animal models, drug development and human studies. Physiological Research, 63. https://doi.org/10.33549/physiolres.932660
66. Sutherland, I. E. (1968). A Head-mounted Three-dimensional Display. Proceedings of Fall Joint Computer Conference 1, 757–764. https://doi.org/10.1145/1476589.1476686
67. Tatsumi, I. F., & Watanabe, M. (2009). Verbal memory. Encyclopedia of neuroscience, 4176-4178. https://doi.org/10.1007/978-3-540-29678-2_6266
68. Tham, J., Duin, A. H., Gee, L., Ernst, N., Abdelqader, B., & McGrath, M. (2018). Understanding virtual reality: Presence, embodiment, and professional practice. IEEE Transactions on Professional Communication, 61(2), 178-195. https://doi.org/10.1109/TPC.2018.2804238
69. Thompson, T. A., Wilson, P. H., Snyder, P. J., Pietrzak, R. H., Darby, D., Maruff, P., & Buschke, H. (2011). Sensitivity and test–retest reliability of the international shopping list test in assessing verbal learning and memory in mild Alzheimer's disease. Archives of clinical neuropsychology, 26(5), 412-424. https://doi.org/10.1093/arclin/acr039
70. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
71. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). I. Spatial skills, their development, and their links to mathematics. Monographs of the Society for Research in Child Development, 82(1), 7–30. https://doi.org/10.1111/mono.12280
72. Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities?. Trends in cognitive sciences, 14(3), 138-146. https://doi.org/10.1016/j.tics.2010.01.001
73. Xi, N., & Hamari, J. (2021). Shopping in virtual reality: A literature review and future agenda. Journal of Business Research, 134, 37-58. https://doi.org/10.1016/j.jbusres.2021.04.075
74. Yang, C., Potts, R., & Shanks, D. R. (2018). Enhancing learning and retrieval of new information: a review of the forward testing effect. NPJ science of learning, 3(1), 8. https://doi.org/10.1038/s41539-018-0024-y
75. Yang, L. I., Huang, J., Feng, T. I. A. N., Hong-An, W. A. N. G., & Guo-Zhong, D. A. I. (2019). Gesture interaction in virtual reality. Virtual Reality & Intelligent Hardware, 1(1), 84-112. https://doi.org/10.3724/SP.J.2096-5796.2018.0006