簡易檢索 / 詳目顯示

研究生: 孫雪禎
Hsuen chen Sun
論文名稱: 用ICP-MS測定含硫二醯胺化合物對過渡金屬的萃取與傳輸
指導教授: 劉高家秀
Liu Gao, Jia-Xiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 79
中文關鍵詞: 過渡金屬萃取實驗傳輸實驗感應式耦合誘導電漿質譜儀
英文關鍵詞: transition metal, extraction, transport, ICP-MS
論文種類: 學術論文
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究以謝清白學長和呂志昇學長所改良的大環醯胺合成法合成一系列十四至十九環含二硫的大環冠狀二醯胺化合物,再利用萃取及傳輸實驗來對過渡金屬離子(Pd2+,Cu2+,Ni2+,Co2+,Pt2+,Pt4+)的錯合能力進行探討;所用的分析儀器是ICP-MS,為的是要做微量分析。
    以電動震盪器進行萃取實驗,在萃取實驗中,這些含硫大環冠狀二醯胺化合物將Pd2+的萃入氯仿層的效能比對Cu2+,Ni2+的萃取效能好,萃取率可達86.3%以上,最佳可達98.3%,且只需45分鐘的震盪時間就可達到萃取平衡。對於Co2+、Pt2+、Pt4+則沒有萃取能力。在有多種過渡金屬離子同時存在時,且其萃取Pd2+的效能也不受影響。
    傳輸實驗中,這些含硫大環冠狀二醯胺化合物對Pd2+的傳輸效能比對Cu2+,Ni2+的傳輸效能為佳,在接受層中測得Pd2+的濃度遠比Cu2+,Ni2+的濃度高,但是傳輸效能並沒有預期中好,這是因為所合成之含硫大環冠狀二醯胺化合物對於所能抓取之過渡金屬離子的抓取能力太強,而不釋放出金屬離子。
    因為感應式耦合電漿質譜儀(ICP-MS)的偵測極限可達0.1mg/L以下,所以選用ICP-MS來偵測水溶液中過渡金屬離子的濃度。

    Abstract
    Fifteen 14- to 19-membered macrocyclic diamides containing sulfur were synthesized by methods developed early in our laboratory. This series of macrocyclic diamides containing sulfur have also been used to study the ability of complexation with transition metal ions (ex:Pd2+, Cu2+, Ni2+, Co2+, Pt2+, and Pt4+) using techniques such as solvent extraction and liquid membrane transport. To achieve analysis of metal ions in PPb level, we use ICP-MS as the analytical tool.
    Extraction is done with the help of mechanical shaking. In solvent extraction experiments, these macrocyclic diamides containing sulfur extract Pd2+ into the chlorform layer better than extract Cu2+ or Ni2+, and the efficiency of extraction is from 86.3% to 98.3%. It takes about 45 minutes of shaking time to reach the equilibrium. The efficiency of Pd2+ extraction is not change in multi-ions extraction experiment.
    In the liquid membrane transport, the concentration of Pd2+ is far better than the concentration of Cu2+ or Ni2+ in the accepted layer. However, the efficiency of transportation is not as good as we expected. Because these macrocyclic diamides containing sulfur hold the Pd2+ ion tightly and do not release it effectively under the testing condition.
    Inductively coupled plasma mass spectrometry(ICP-MS) can achieve determination limits of part-per-trillion level. We choose this instrument to determine the concentrations of transition metal ion in the aqueous solution.

    目錄 中文摘要--------------------------------------------------Ⅰ 英文摘要--------------------------------------------------Ⅱ 圖目錄----------------------------------------------------Ⅲ 表目錄----------------------------------------------------Ⅴ 第一章:緒論 1-1重金屬污染---------------------------------------------1 1-2大環冠狀化合物的錯合研究-------------------------------2 1-3大環冠狀二醯胺化合物的合成-----------------------------6 1-4傳輸實驗-----------------------------------------------7 1-5感應耦合電漿質譜(ICP-MS)簡介---------------------------9 第二章:實驗部分 2-1儀器--------------------------------------------------12 2-2藥品--------------------------------------------------12 2-3合成部分----------------------------------------------14 2-3-1 2,2’-雙(2-羧基苯基硫)乙基醚[2,2’-bis(2-carboxy phenyl-thio) ethyl ether的一般合成步驟-------------------14 2-3-2 含有二硫原子及一氧原子的大環冠狀二醯胺化合物(5a-5c)的一般合成步驟---------------------------------------------14 2-3-3 1,2-雙(2-羧基苯基硫)烷化合物[1,2-bis(carboxylphenyl thio) alkane]的一般合成步驟------------------------------17 2-3-4含有二硫原子的大環冠狀二醯胺化合物(6a-9c)的一般合成步驟-------------------------------------------------------17 2-4含硫的大環冠狀二醯胺化合物(5a-9c)對過渡金屬離子(Pd2+、Cu2+、Ni2+、Co2+、Pt2+、Pt4+)的萃取實驗研究--------------27 2-4-1含硫大環冠狀二醯胺化合物對不同濃度Pd2+的萃取比率實驗-29 2-4-2萃取時間對含硫大環冠狀二醯胺化合物單一萃取Pd2+、Cu2+、Ni2+、Co2+、Pt2+、Pt4+的影響-----------------------------30 2-4-3含硫大環冠狀二醯胺化合物對於混合過渡金屬(Pd2+、Cu2+、Ni2+、Co2+、Pt4+)水溶液的萃取研究------------------------31 2-4-4改變金屬離子濃度對含硫大環冠狀二醯胺化合物混合萃取過渡金屬(Pd2+、Cu2+、Ni2+、Co2+、Pt4+)的影響-----------------31 2-4-5改變水溶液pH值對含硫大環冠狀二醯胺化合物混合萃取過渡金屬(Pd2+,Cu2+)的影響-------------------------------------32 2-5含硫的大環冠狀二醯胺化合物(5a~9c)對過渡金屬離子(Pd2+,Cu2+,Ni2+,Co2+,Pt4+)的傳輸實驗------------------------32 2-5-1含硫大環冠狀二醯胺化合物6a的濃度對於傳輸實驗的影響--33 2-5-2硫酸水溶液的濃度對於傳輸實驗的影響------------------34 2-5-3含硫大環冠狀二醯胺化合物對於過渡金屬(Pd2+,Cu2+,Ni2+)的單一傳輸實驗-------------------------------------------34 2-5-4含硫大環冠狀二醯胺化合物對於混合多種過渡金屬(Pd2+、Cu2+、Ni2+、Co2+、Pt4+)的傳輸實驗------------------------35 2-6以快速原子撞擊質譜法對含硫大環冠狀二醯胺化合物和過渡金屬離子(Pd2+、Cu2+、Ni2+、Co2+、Pt2+)的錯合研究-------------35 第三章:結果與討論 3-1萃取實驗的結果與討論----------------------------------36 3-1-1萃取比率的選定--------------------------------------36 3-1-2萃取時間的選定--------------------------------------38 3-1-3含硫大環冠狀二醯胺化合物對於混合萃取過渡金屬離子(Pd2+、Cu2+、Ni2+、Co2+、Pt4+)能力的探討------------------------39 3-1-4金屬離子水溶液pH值對於混合萃取的影響----------------53 3-2傳輸實驗的結果與討論----------------------------------55 3-2-1改變含硫大環冠狀二醯胺化合物6a的濃度對單一過渡金屬(Pd2+、Cu2+、Ni2+)傳輸實驗-------------------------------55 3-2-2不同濃度硫酸溶液的傳輸實驗--------------------------56 3-2-3含硫大環冠狀二醯胺化合物對Pd2+,Cu2+,Ni2+的個別傳輸效能-------------------------------------------------------57 3-2-4含硫大環冠狀二醯胺化合物同時傳輸多種過渡金屬Pd2+、Cu2+、Ni2+、Co2+、Pt4+-----------------------------------60 3-2-5計算含硫大環冠狀二醯胺化合物在單一傳輸時對過渡金屬離子(Pd2+、Cu2+、Ni2+)的抓取率-------------------------------63 3-3FAB-MS的結果與討論------------------------------------68 第四章:結論---------------------------------------------74 參考文獻-------------------------------------------------75 附錄-----------------------------------------------------79

    參考文獻:
    1. Kremling, K.;Petersen, H. Anal. Chem., 1974, 70, 35.
    2. Jan. T. K.; Young, D. R. Anal. Chem., 1978, 50, 1250.
    3. Mcleod, C, W.; Otsuki, A.; Okamoto, K.; Haraguchi, H.; Fuwa, K. Analyst, 1981, 106, 419.
    4. Lo, J. M.; Yu, J. C.; Hutchlson, F. J.; Wai, C. M. Anal. Chem., 1982, 54, 2536.
    5. Sugiyama, M.; Fujino, O.; Kihara, S.; Matsui, M. Anal. Chim. Acta, 1986, 181, 159.
    6. Tao, K.; Miyazaki, A.; Bansho, K.; Umezaki, Y. Anal. Chim. Acta, 1984, 56, 159.
    7. Babu, D. R.; Naidu, P. R. Talanta, 1991, 38, 175.
    8. Petranek, J.; Ryba, O. Anal. Chim. Acta, 1981, 128, 129.
    9. Petranek, J.; Ryba, O. Collect. Czech. Commum., 1983, 48, 1944.
    10. Kimura, E.; Dalimunte, C. A; Yamashita, A.; Machida, R. J. Chem. Soc., Chem. Commum., 1985, 1041.
    11. Kimura, E. J. Coord. Chem.1986, 15, 1.
    12. Attiyat, A. S.; Ibrahim, Y. A.; Kadry, A. M.; Xie, R. Y.; Christian, G. D. Z. Anal. Chem. 1987, 329, 12
    13. Collins, T, J.; Kostka, K. L.; Munck, E.; Uffelman, E. S. J. Chem. Soc., Chem. Commum., 1990, 5637.
    14. Agrawal, Y. K.; Shrivastav,P.; Menon,S. K. Separa & Pure Technology. 2000, 200, 177.
    15. Weber, E.; Toner, J. L.; Laidler, C. A. Stoddart, J. F. and Bartsch, R. A. Ed. “Crown ethers and analogs”, Wiley & Sone, New, York, 1989.
    16. Pederson, C. J. J. Am. Chem. Soc. 1970, 92, 386.
    17. Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600.
    18. Izatt, R. M.; Eatough, D. J.; Christensen, J. J. Chem. Rev. 1974, 74, 351.
    19. Izatt, R. M.; Bradshaw, J. S.; Lamb, J. D. Chem. Rev. 1985, 74, 271.
    20. Kimura, E.; Kurogi, Y.; Tojo, T.; Shionoya, M. and Shiro, M. J. Am. Chem. Soc. 1991, 113, 4857.
    21. Kimura, E.; Kuroogi, Y.; Wada, S. and Shionoya, M. J. Chem. Soc. Chem. Commun. 1989, 781.
    22. Kimura, E. Tetrahedron, 1992, 48, 6175.
    23. Kimura, E.; Kuroogi, Y.; Wada, S.; Shionoya, M. J. Chem. Soc. Chem. Commun. 1988, 1166.
    24. Kimura, E. Pure & Appl. Chem. 1989, 61, 823.
    25. Bossu, F. P.; Chellappa, K. L.; Margerum, D. W. J. Am. Chem. Soc. 1977, 99, 2195.
    26. Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365.
    27. Walkowiak, W.; Nidp, G.; Bartsch, A., Anal. Chem. 1999, 71, 1021.
    28. Bond, A. H.; Chiarizia, R.; Huber, V. J.; Dietz, M. L. Anal. Chem. 1999, 71, 2757.
    29. Yost, T. L.; Fagan, B. C.; Allain, L. R.; Barnes, C. E.; Dai, S.; Sepaniak, M. J.;Xue, Z. Anal. Chem. 2000, 72, 5516.
    30. Nakatsuji, Y.; Kita, K.; Inoue, H.; Zhang, W.; Kida T.; Ikeda, I. J. Am. Chem. Soc. 2000, 122, 6307.
    31. A. Gherrou,; H. Kerdjoudj,; R. Molinari,; E. Drioli,; Separa & Pure Technology. 2001, 22, 571.
    32. Liu, L. K.; Hsidh, T. P.; Kuo, S. M. Synthesis, 1994, 309.
    33. Barstow, L. E.; Hruby, U. J. J. Org. Chem. 1971, 36, 1305.
    34. Stock, G.; Morgans, D. J. J. Am. Chem. Soc. 1979, 101, 7110.
    35. Melson,; G. A. Ed. “Coordination Chemistry of Macrocyclic Compounds”, Plecum, New York, 1979.
    36. Izatt, R. M.; Christensen, J. J. Ed. “Process in Macrocyclic Chemistry”, J. Wiley & Sons, New York, 1979.
    37. Tsukube, H. J. Coord. Chem. 1987, 16, 101.
    38. Choy, E. M.; Evans, D. F.; Cussler, E. L. J. Am. Chem. Soc. 1974, 96, 7085.
    39. Izatt, R. M.; Lindh, G, C.; Brening, R. L.; Bradshaw, J. S.; Lamb, J. D.; Christensen, J. J. Pure & Appl. Chem. 1986, 58, 1453.
    40. Wienk, M. M.; Stolwijk, T. B.; Sudholten, E. J. R.; Reinnadt, J. J. Am. Chem. Soc. 1989, 112, 798.
    41. Lamb, J. D.; Christensen , J. J.; Izatt, S. R.; Bedke, K.; Astin, M. S.; Izatt, R. M. J. Am. Chem. Soc. 1980, 102, 3399.
    42. Fredrick, L. A.; Fyles, T. M.; Malik-Diemer, V. A.; Whitfield, D. M. J. Chem. Soc. Chem. Commun. 1980, 1211.
    43. Czech, B.; Kang, S. I.; Barsch, R. A. Tetrahedron Lett. 1983, 24, 457.
    44. Nakatsuji, Y.; Kobayashi, H.; Okakara, H. J. Chem. Soc. Chem. Commun. 1983, 801.
    45. Kimura, E.; Sakamoto, H.; Yoshinage, M.; Shono, T. J. Chem. Soc. Chem. Commun. 1983, 978.
    46. Izatt, S. R.; Hawkins, R. T.; Christensen, J. J.; Izatt, R. M. J. Am. Chem. Soc. 1985, 107, 63.
    47. Houk, R. S. Acc. Chem. Res., 1994, 27, 333.
    48. Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Tayor, C. E. Anal. Chem. 1980, 52, 2283.
    49. Houk, R. S. Anal. Chem. 1986, 58, 97A.
    50. Olesik, J. W. Anal. Chem. 1991, 63, 12A.
    51. Olesik,J. W. Anal. Chem. 1996, 68, 469A.
    52. Richaud, R.; Lazaro, M. J.; Lachas,H.; Herod, A. A. Rapid Commum. Mass Spectrom. 2000, 14, 317.
    53. Lachas, H.; Richaud, R.; Herod, A. A.; Dugwell, D. R.; Rapid Commum. Mass Spectrom. 2000, 14, 335.
    54. The Guide to Techniques and Appications of Atomic Spectroscopy, Perkin Elmer Ltd. 1995.
    55. 程本毅, 國立台灣師範大學化學研究所論文, 2001.
    56. 呂志昇, 國立台灣師範大學化學研究所論文, 1996.
    57. 陳恆毅, 國立台灣師範大學化學研究所論文, 2000.

    無法下載圖示 電子全文延後公開
    2102/06/20
    QR CODE