簡易檢索 / 詳目顯示

研究生: 邱奕傑
Ciou, Yi-Jie
論文名稱: 兆赫頻段下之磁流體光學常數探討
Terahertz Optical Properties of Ferrofluid
指導教授: 楊承山
Yang, Chan-Shan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 57
中文關鍵詞: ZnTe配置的兆赫波時域光譜飛秒雷射磁流體兆赫波磁光調制器
英文關鍵詞: ZnTe-configured Terahertz time-domain spectroscopy, femtosecond laser, ferrofluid, Terahertz Magneto-Optical modulator
DOI URL: http://doi.org/10.6345/NTNU202000353
論文種類: 學術論文
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁流體為一種可以利用磁場進行控制的智能奈米流體,因為磁流體的光學、熱學、流變性質可以達到精準地控制因此被歸類為智能流體,其應用在工業上包含了無洩漏密封[1][2]、軸承潤滑液[3],其軸承間具有磁力使得磁流體能夠完美的包覆在軸承之間達成無洩漏的密封狀態並且可以降低軸承之間的摩擦力並且此應用也在噴墨列印機上展現出優良的打印能力[4],並且在光學上也根據其調節優越的特性成功製成了良好的光柵[5]並且對於施加不同強度的磁場還能夠產生對不同波長下使用的光學濾波片[6],在生物醫療上因為其操控能力優越以外,磁流體的表面活性劑還能夠與生物分子的鍵結產生配對,諸如:生物感測器[7]、醫療診斷[8]、標靶治療[9]等等[10]。隨著網路技術的發達,我將研究在兆赫波段中鮮少被使用的磁光效應調制器來應對新網路時代的來臨,由於能夠在兆赫波段下產生磁光效應的材料需要斟酌,我將利用四氧化三鐵的磁流體在不同的平行磁場強度下的磁光特性對兆赫波段進行調制,藉由磁光效應所帶來的折射率變化對兆赫波產生有效的調制成果。
    本論文將使用以ZnTe晶體作為兆赫波發射源的兆赫波時域光譜系統,利用高尖峰功率的飛秒雷射激發晶體產生出兆赫波並且也利用ZnTe作為兆赫波偵測器,通過離軸拋物面鏡將兆赫波導入樣品中心,最後藉由四分之一波片與Wollaston prism整理兆赫波訊號接收至光偵測器,藉由兆赫波通過前樣品與通過後的變化得出此樣品在兆赫波段的穿透率為何再以兆赫波的色散與振幅變化推算出樣品的折射率與消光係數。本研究使用親水性磁流體與親油性磁流體做出比對,以得證親油性磁流體對於兆赫頻段具有顯卓的表現。

    Ferrofluid is a smart nanofluid that can be controlled using a magnetic field. Because the optical, thermal, and rheological properties of magnetic fluids can be precisely controlled, it is classified as a smart fluid. Its application in the industry includes leak-free sealing [1 ] [2], bearing lubricating fluid [3], there is magnetic force between the bearings so that the magnetic fluid can be perfectly covered between the bearings to achieve a leak-free sealed state and can reduce the friction between the bearings and this application is also spraying Ink printers have demonstrated excellent printing capabilities [4], and optically have successfully made good gratings [5] according to their excellent adjustment characteristics, and can also produce different wavelengths at different wavelengths for applying magnetic fields of different strengths. The optical filter used [6], in addition to its superior handling ability in biomedicine, Ferrofluid surfactants can also be paired with biomolecule bonds, such as: biosensors [7], medical diagnosis [8] ], Target therapy [9], etc. [10]. With the development of network technology, I will study magneto-optic effect modulators that are rarely used in Terahertz to cope with the advent of the new Internet era. Since materials capable of generating magneto-optical effects under Terahertz need to be considered, I will use Fe3o4 The magneto-optical properties of the Ferrofluid produced under different parallel magnetic field intensities modulate Terahertz, and the refractive index changes caused by the magneto-optical effect produce effective modulation results for Terahertz waves.
    In this paper, a Terahertz time-domain spectroscopy system using a ZnTe crystal as a Terahertz emitter will be generated using a femtosecond laser with a high peak power to generate a Terahertz wave. The Terahertz wave will also be used as a Terahertz detector by ZnTe. Introduced into the sample center, and finally the Terahertz signal was received by the quarter wave plate and Wollaston prism to receive the light detector. The Terahertz wave passed the sample before and after the change to determine the transmittance of this sample in Terahertz. The refractive index and extinction coefficient of the sample were calculated based on the dispersion and amplitude changes of the Terahertz wave. In this study, a comparison was made between the hydrophilic Ferrofluid and the lipophilic Ferrofluid.

    中文摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 X 表目錄 XII 第一章 序論 1 1.1 兆赫波 1 1.2 磁流體之介紹 2 1.2.1 超順磁性 4 1.2.2 磁光效應 4 1.3 磁流體之兆赫波段研究 5 1.4 本論文的組織 8 第二章 實驗設置 9 2.1 磁流體製備 9 2.2 雷射系統(Legend Elite HE+ USP-5K-III) 9 2.3 基於ZnTe設置的兆赫波時域光譜(THz-TDS)架設 12 第三章 理論模型和分析方法 15 3.1 THz-TDS 15 3.1.1 基於ZnTe產生的兆赫波訊號 15 3.1.2 ZnTe偵測兆赫波訊號 17 3.2 THz-TDS取得材料的光學常數 26 3.2.1 厚樣品 26 3.2.2 薄樣品 30 3.2.3 取得折射率 32 3.3 光導率 34 3.3.1 馬克斯威爾方程式(Maxwell equation) 34 3.3.2 複介電功能 34 3.3.3 德魯德自由電子模型(Drude free-electron model) 35 3.3.4 德魯德史密斯模型(Drude-smith model) 39 第四章 結果與討論 41 4.1 磁流體材料特性分析 41 第五章 結論 51 5.1 結論 51 5.2 未來工作 52 參考文獻 53

    [1] Odenbach, Stefan. "Recent progress in magnetic fluid research." Journal of physics: condensed matter 16.32 (2004): R1135.
    [2] Ochoński, W. "Dynamic sealing with magnetic fluids." Wear 130.1 (1989): 261-268.
    [3] R. Moskowitz, P. Stahl, and W. R. Reed, Ferrofluidics Corporation, assignee, Dynamic lip seal using ferrofluids as sealant/lubricant, United States Patent 4,171,818, October (1979).
    [4] K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).
    [5] Pu, Shengli, et al. "Tunable magnetic fluid grating by applying a magnetic field." Applied Physics Letters 87.2 (2005): 021901.
    [6] Philip, John, et al. "A tunable optical filter." Measurement Science and Technology 14.8 (2003): 1289.
    [7] M. Stromberg, K. Gunnarsson, H. Johansson, M. Nilsson, P. Svedlindh, and M. Strømme, J. Phys. D: Appl. Phys. 40, 1320 (2007).
    [8] M. H. Pablico-Lansigan, S. F. Situ, and A. C. S. Samia, Nanoscale 5, 4040 (2013).
    [9] Ch. Alexiou,R. Schmid,R. Jurgons,Ch. Bergemann,W. Arnold,F. G. Parak“Targeted Tumor Therapy with “Magnetic Drug Targeting”: Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone,”springer Link,Ferrofluids,pp.233-251, (2002).
    [10] L. J. Felicia, S. Vinod, and J. Philip, “Recent Advances in Magnetorheology of Ferrofluids (Magnetic Nanofluids)—A Critical Review” Journal of Nanofluids 5,No.1,pp.1-22(2016).
    [11] Coelho, B. C. P., et al. "Maghemite–gold core–shell nanostructures (γ-Fe 2 O 3@ Au) surface-functionalized with aluminium phthalocyanine for multi-task imaging and therapy." RSC Advances 7,NO.19,pp.11223-11232(2017).
    [12] J. H. Strait, P. A. George, M. Levendorf, Martin Blood-Forsythe, Farhan Rana, and Jiwoong Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy,” Nano Lett.,9, No. 8, pp. 2967-2972, (2009).
    [13]K. Ajito and Y. Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Transactions on Terahertz Science and Technology,1, No. 1, pp. 293-300,(2011).
    [14]B. B. Hu and M. C. Nuss, W E. Sleat, and W Sibbett, “Imaging with terahertz waves,” Opt. Lett.,20, No. 16, pp. 1716-1718,(1995).
    [15] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett.,45, No. 3, pp. 284-286, (1984).
    [16]A. Rice, Y. Jin, X. F. Ma, X.C. Zhang, D. Bliss et al., “Terahertz optical rectification from 110 zincblende crystals,” Appl. Phys. Lett.,64, No. 11, pp. 1324-1326,(1994).
    [17]X.C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett.,56, No. 11, pp. 1011-1013,(1990).
    [18] R. Köhler et al, “Terahertz semiconductor heterostructure laser,” NATURE,417, No. 6885, pp. 156-159,(2002).
    [19] D. E. Spence, J. M. Evans, W E. Sleat, and W Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett.,16, No. 22, pp. 1762-1764,(1991).

    [20] D. E. Spence, J. M. Evans, W E. Sleat, and W Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett.,16, No. 22, pp. 1762-1764,(1991).
    [21]D.Krueger et al, “Review of agglomeration in ferrofluids,” IEEE Transactions on Magnetics,16,No.2,pp.251-253, (1980).
    [22] Ch. Alexiou,R. Schmid,R. Jurgons,Ch. Bergemann,W. Arnold,F. G. Parak“Targeted Tumor Therapy with “Magnetic Drug Targeting”: Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone,”springer Link,Ferrofluids,pp.233-251, (2002).
    [23] X. Liu,L. Xiong,X. Yu,S. He,B. ZhangandJ.-l. Shen“Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids, ” Journal of Physics D: Applied Physics,51,NO.10,(2018).
    [24] C.P.BEAN, J. D. LIVINGSTON“Superparamagnetism”. Journal of Applied Physics,30,NO.4, pp.120–129,(1959).
    [25] M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. A.-Naib, L.Razzari, T. Ozaki, A.Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid”Appl. Phys. Lett. 100, 241107 (2012).
    [26] Q. Mu, F. Fan, S. Chen, S. Xu, C. Xiong, X. Zhang, X. Wang, and S.Chang “ Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure” Photonics Research,7, NO.3, pp. 325-331 (2019).
    [27] Yusuf, Nihad A., Akram A. Rousan, and Hassan M. El‐Ghanem. "The wavelength dependence of Faraday rotation in magnetic fluids." Journal of applied physics 64.5 (1988):
    [28] Di, Ziyun, et al. "Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids." Applied physics letters 89.21 (2006): 211106.
    [29] F. Fan, S. Chen, and S.-J.Chang, “ A Review of Magneto-Optical Microstructure Devices at Terahertz Frequencies” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 23, NO. 4,(2017).
    [30] S. Chen, F. Fan, S.j Chang, Y.p Miao, M. Chen, J. Li, X.h. Wang, and L. Lin,“ Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime” Optics Express,22,NO. 6,pp. 6313-6321(2014).
    [31] D. Strickland and G. Mourou, ”Compression of amplified chirped optical pulses” Optics Communications,55,No. 6,pp.447-449(1985).
    [32] Hatem, Osama. "Peak emission of terahertz waves from (110)-oriented ZnTe by interacting phase-matched phonon resonances." JOSA B,36,NO.4,pp.1144-1149,(2019).
    [33]Shalaby, Mostafa, et al. "Terahertz magnetic modulator based on magnetically clustered nanoparticles." Applied Physics Letters,105,No.15,pp.151108,(2014).
    [34] Reed, Murray K., Michael K. Steiner-Shepard, and Daniel K. Negus. "Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti: sapphire regenerative amplifier." Optics letters 19.22 (1994): 1855-1857.
    [35] Malevich, Pavel, et al. "High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers." Optics letters 38.15 (2013): 2746-2749.
    [36] Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Hein, Mischa Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Reviews of Modern Physics, Vol. 83, pp. 543-586,2011.
    [37] Zhang, X‐C., et al. "Influence of electric and magnetic fields on THz radiation." Applied physics letters 62.20 (1993): 2477-2479.
    [38] Nahata, Ajay, Aniruddha S. Weling, and Tony F. Heinz. "A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling." Applied physics letters 69.16 (1996): 2321-2323.
    [39] Guangsheng He, “Nonlinear Optics and Photonics,”(2015)
    [40]C. W. Chen, Y. C. Lin, C. H. Chang, P. Yu, J. M. Shieh, and C. L. Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, Vol. 46, No. 12, pp. 1746-1754,2010.
    [41] Li, Yuanpeng, et al. "Comparison Study of Gold Nanorod and Nanoparticle Monolayer Enhanced Optical Terahertz Modulators." IEEE Transactions on Terahertz Science and Technology 9.5 (2019): 484-490.
    [42] Brabec, Thomas, et al. "Kerr lens mode locking." Optics letters 17.18 (1992): 1292-1294.
    [43] Jördens, C., et al. "Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy." Polymer Testing 29.2 (2010): 209-215.
    [44] Huang, Shengyang, et al. "Improved sample characterization in terahertz reflection imaging and spectroscopy." Optics express 17.5 (2009): 3848-3854.
    [45] Pedersen, J. E., and S. R. Keiding. "THz time-domain spectroscopy of nonpolar liquids." IEEE Journal of Quantum Electronics 28.10 (1992): 2518-2522.

    無法下載圖示 本全文未授權公開
    QR CODE