簡易檢索 / 詳目顯示

研究生: 陳晏清
Chen Yen Ching
論文名稱: 鋪覆超薄膜於針狀金屬表面之現象研究
Phenomena of ultrathin film covered metal tip surfaces
指導教授: 傅祖怡
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 場離子顯微鏡
英文關鍵詞: cobalt, platinum, iridium, Silicene, field ion microscope
論文種類: 學術論文
相關次數: 點閱:266下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗藉由場離子顯微鏡,觀察超薄膜鋪覆於針狀金屬表面之現象。其實驗現象可分為兩方向討論,其一為覆鉑於鈷針狀結構,由於切面擴張產生皺化現象。加熱退火至600K,可發現由於鉑之鋪覆,增加表面能異向性、降低皺化所需之加熱退火溫度,使得表面自由能較低的(0001)、(1013)、 (1013)切面擴張,並形成單條稜線,但由於鈷為非耐火性之材料,因此易受加熱退火影響,使得稜線成長不完整,難以觀察到金字塔堆疊。
    另一方向為,覆矽於銥及鉑針狀結構,成長單層皺形之蜂巢結構-Silicene。由於場離子顯微鏡可看到同一樣品之各個切面,因此可觀察矽於各個切面成長之穩定結構:覆矽於銥(111)切面可發現,同時蒸鍍及加熱退火,可成長較特殊的結構;於銥(100)切面可觀察到矽原子排列成(3×2)之結構;於(311)、(310)及台階邊緣可成長帶狀、六角結構。
    覆矽於鉑(111)切面,可觀察切面上可成長六角結構,與現在備受討論的議題-「Silicene」具有相似結構,因此推測鉑也可能成為成長Silicene之基底。

    The study is about the phenomena of ultrathin film covered metal tip surfaces by field ion microscope. It can be divided into two directions. One is for faceting phenomena of platinum covered cobalt tip which will increase the surface energy anisotropy, lower the temperature of faceting let (0001) and {1013} faces expanding resulted in the formation of crest lines at 600K. But due to cobalt is a nonrefractory material the crest lines are not complete.
    The other one, silicon covered iridium and platinum tip growth buckled honeycomb structure. With the field ion microscope, we can see the various facets of the same sample, so we can observe the stable structure of each section: at Ir(111) facet we can found more special structures; at Ir(100) facet we can observe the silicon atoms be arranged in (3×2) structure; at (311), (310) and the platform edge, strip and hexagonal structure can be grown.
    The facets of silicon covered platinum (111), the surface can develop into hexagonal structures, with the extensive discussed issue of "Silicene" has a similar structure, therefore ,it could infer that platinum may also become a growing substrate of Silicene .

    摘要 第一章 緒論 1-1 研究動機…………………………………………………1 1-2 實驗可行性………………………………………………3 1-3 奈米針之發展……………………………………………5 1-4 場離子顯微鏡之優勢……………………………………8 第二章 實驗原理 2-1 場離子成像原理…………………………………………10 2-2 場離子化的機制…………………………………………13 2-3 場退吸附與場蒸發………………………………………17 2-4 場離子影像說明…………………………………………19 2-5 表面皺化機制……………………………………………23 第三章 實驗儀器與步驟 3-1 場離子顯微鏡的儀器裝置………………………………24 3-2 實驗步驟…………………………………………………35 第四章 實驗結果與討論 4-1 鈷針狀結構性質之研究…………………………………41 4-2 覆鉑於鈷針狀結構之皺化現象…………………………47 4-3 覆矽於銥針狀結構之研究………………………………52 4-4 覆矽於鉑針狀結構之研究………………………………64 4-5 矽於針狀金屬之綜合討論………………………………65 第五章 結論 5-1 鈷針狀結構性質之研究…………………………………68 5-2 覆鉑於鈷針狀結構之皺化研究…………………………68 5-3 覆矽於銥針狀結構之研究………………………………68 5-4 覆矽於鉑針狀結構之研究………………………………69 參考文獻 ………………………………………………………70

    [1] K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306,666 (2004)
    [2] 莊振益, “21世紀第一個十年,凝態物理發展的二、三事”,全華物理專刊, 1 (2010)
    [3] P. R. Wallace, “The Band Theory of Graphite” , Phys. Rev. 71, 622 (1947)
    [4] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., “The electronic properties of grapheme”, Rev. Mod. Phys. 81, 109-162 (2009)
    [5] Pumera, M., “Electrochemistry of graphene:new horizons for sensing and energy storage”, Chemical Record 9, 211 (2009)
    [6] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, Byung Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706 (2009)
    [7] Stolyarova E., Rim K. T., Ryu S. M., Maultzsch J., Kim P., Brus L. E., Heinz T. F., Hybertsen M. S., Flynn G. W., “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface”,Proc. Natl. Acad. Sci. U.S.A., 104, 9209 (2007)
    [8] K. Takeda, K. Shiraishi, “Theoretical possibility of stage corrugation in Si and Ge analogs of graphite” , Phys. Rev. B 50, 14 916 (1994)
    [9] Zhang M, Kan Y.H., Zang Q.J., Su Z.M., Wang R.S., “Why silicon nanotubes stably exist in armchair structure?”, Chem. Phys. Lett. 379, 81(2003)
    [10] S. Cahangirov, M. Topsakal, E. Aktu¨rk, H. S¸ ahin, S. Ciraci, “Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium”, Phys. Rev. Lett. 102, 236804 (2009)
    [11] Lei Meng, Yeliang Wang, Lizhi Zhang, Shixuan Du, Rongting Wu, Linfei Li, Yi Zhang, Geng Li, Haitao Zhou, Werner A. Hofer, Hong-Jun Gao, “Buckled Silicene Formation on Ir(111)”, Nano Lett. 13, 685 (2013)
    [12] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B, “Epitaxial growth of a silicene sheet”, Appl. Phys. Lett. 97 223109(2010)
    [13] Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, Xiaoyue He, Peng Cheng, Lan Chen, Kehui Wu, “Evidence of silicene in honeycomb structures of silicon on Ag(111)”, Nano Lett. 12 ,7,3507 (2012)
    [14] C.-C. Liu, W. Feng, Y. Yao, “Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium”, Phys. Rev. Lett. 107, 076802 (2011)
    [15] Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Be´ne´dicte Ealet, Guy Le Lay, “Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon”, Phys. Rev. Lett. 108,15501 (2012)
    [16] 江佳倫, “鈷在鉑上形成超尖磁性奈米針尖之研究”, 國立台灣師範大學碩士論文 (2009)
    [17] Tsu-Yi Fu, Chia-Lun Chiang, Rung-Jiun Lin, Jin-Long Hou, Hong-Shi Kuo, Ing-Shouh Hwang, “Fabrication of Ultra-Sharp Single Atom Tips”, J. Nanoscience Nanotechnology 11,10687 (2011)
    [18] J. S. Tsay, C. S. Shern , “Diffusion and alloy formation of Co ultrathin films on Pt(111)”, J. Appl. Phys. 80, 3777 (1996)
    [19] P. Griitter , U. T. Durig , “Growth of vapor-deposited cobalt films on Pt(111) studied by scanning tunneling microscopy”, Phys. Rev. B 49,2021 (1994)
    [20] 物理雙月刊廿九卷一期25(2007)
    [21] Hong-Shi Kuo, Ing-Shouh Hwang, Tsu-Yi Fu, Yi-Hsien Lu, Chun-Yueh Lin, “Gas field ion source from an Ir/W〈111〉single-atom tip”, Appl. Phys. Lett. 92, 063106 (2008)
    [22] Hans-Werner Fink, “Point source for ions and electrons”, Physica Scripta. 38,260 (1988)
    [23] Hans-Werner Fink, “Mono-atomic tips for scanning tunneling microscopy” , IBM J. Res. Dev. 30,460 (1986)
    [24] A. P. Janssen, J. P. Jones, “The sharpening of field emitter tips by ion sputtering”, J. Phys. D 4,118 (1971)
    [25] Moh’d Rezeq, Jason Pitter, Robert Wolkow, “Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen” , J. Chem. Phys. 124,204716 (2006)
    [26] T.E. Madey, C.-H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.-S. Tao, “Coexistence of {011} facets with {112} facets on W(111) induced by ultrathin films of Pd”, Phys. Rev. B 59,10335 (1999)
    [27] Jie Guan, Robert A. Campbell, Theodore E. Madey, “Ultrathin metal films on W(111): morphology and faceting reconstruction”, Surf. Sci. 341, 311 (1995)
    [28] C.-H. Nien, T. E. Madey, “Atomic structures on faceted W(111) surfaces induced by ultrathin films of Pd”, Surf. Sci. 380, L527 (1997)
    [29] 林榮君, “鉑的重構-皺化與失蹤原子列的觀察與研究”, 國立台灣師範大學碩士論文 (2005)
    [30] Tsu-Yi Fu, Lung-Chieh Cheng,C.-H. Nien, Tien T. Tsong, “Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation”, Phys. Rev. B 64, 113401 (2001)
    [31] H. S. Kuo, I. S. Hwang, T. Y. Fu, J. Y. Wu, C. C. Chang, T. T. Tsong, “Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics”, J. Appl. Phys. 45,8972 (2006)
    [32] 林砡君, “覆銠、銥於鎢針上產生的皺化行為及其相關硏究”, 國立台灣師範大學碩士論文 (2005)
    [33] 吳俊毅, “單原子尖度金字塔形鎢針的結構與應用之硏究”, 國立台灣師範大學碩士論文 (2003)
    [34] 陳怡如, “覆鈀、銥於鉬針形成金字塔單原子針尖之研究”, 國立台灣師範大學碩士論文 (2011)
    [35] 陳曉琪, “覆鉑、銠於鉬針形成金字塔單原子針尖之研究”, 國立台灣師範大學碩士論文 (2012)
    [36] 黃穎祥, “氧氣誘發銥(210)面皺化現象:金字塔結構銥單原子針的製備條件分析”, 國立台灣師範大學碩士論文 (2007)
    [37] 戴鵬哲, “氫、氧誘發鎳表面金字塔型單原子針尖”, 國立台灣師範大學碩士論文 (2009)
    [38] E. W. Müller, “Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope”, Z. Physik, 106,541 (1937)
    [39] 真空技術與應用,行政院國家科學委員會精密儀器發展中心 (2001)
    [40] E. W. Müller, T. T. Tsong, “Field Ion Microscopy Principles and Applications”, American Elsevier Publishing Company(1969)
    [41] A. Lukaszewski, A. Szczepkowicz, “Computer simulation of FIM images – the convex hull model”, Vacuum 54, 67 (1999)
    [42] Andrzej Szczepkowicz, Antoni Ciszewski, Robert Bryl, Czesław Oleksy, Cheng-Hsun Nien, Qifei Wu, Theodore E. Madey, “A comparison of adsorbate-induced faceting on flatand curved crystal surfaces”, Surf. Sci. 599,55 (2005)
    [43] Osamu Nishikawa, Erwin W. Muller , “Field-Ion Microscopy of Cobalt”, J. Appl. Phys. 38, 3159 (1967)
    [44] E. A. Owen, D. Madoc Jones, “Effect of Grain Size on the Crystal Structure of Cobalt”, Proc. Phys. Soc. B,67,456 (1954)
    [45] Jian-Min Zhang, Dou-Dou Wang, Ke-Wei Xu, “Calculation of the surface energy of hcp metals by using the modified embedded atom method”, Appl. Surf. Sci. 253,2018 (2006)
    [46] H. F. Liu, H. M. Liu, and T. T. Tsong, “Initial Stages of Iridium-Semiconductor Compound Formation: A Field-Ion-Microscope Study of Interface Atomic Structures”, Phys. Rev. Lett. 56,65(1985)
    [47] C. Le´andri, H. Oughaddou, B. Aufray, J.M. Gay, G. Le Lay, A. Ranguis, Y. Garreau, “Growth of Si nanostructures on Ag(001)”, Surf. Sci. 601,262 (2007)
    [48] C. E. Allenvato,Cronin B.Vining, “Phase diagram and electrical behavior of silicon-rich iridium silicide compouds”, J. Alloys Compd.200,99 (1993)
    [49] Lan Chen, Hui Li, Baojie Feng, Zijing Ding, Jinglan Qiu, Peng Cheng, Kehui Wu, and Sheng Meng, “Spontaneous Symmetry Breaking and Dynamic Phase Transition in Monolayer Silicene” Phys. Rev. Lett. 110, 085504 (2013)

    下載圖示
    QR CODE