研究生: |
黃義澧 Huang, Yi-Li |
---|---|
論文名稱: |
利用LC-MS鑑定哺乳類聚醣中差異性鏈結單醣殘基 Identifying specific and differentially linked glycosyl residues in mammalian glycans by targeted LC-MS analysis |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 醣鏈結分析 、部分甲基化醣醇 、液相層析串聯式質譜 |
英文關鍵詞: | glycans linkage analysis, partially methylated alditol,, LC-MS |
DOI URL: | https://doi.org/10.6345/NTNU202202826 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:77 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚醣是由數個單醣藉由糖苷鍵連結而成,由於醣蛋白中的聚醣結構具有高度複雜性,因此了解聚醣中單糖的組成與鍵結就成為重要的工作。在本實驗中開發一個方法,將聚醣經過一連串反應並水解形成 ”部份甲基化糖醇partially O-methylated alditols (PMAs)” 結合液相層析搭配串聯式質譜儀進行分析。實驗流程方面,取得聚醣後將聚醣進行還原,還原端的單醣會被還原而開環,接著進行聚醣的全甲基化,會將聚醣上所有free hydroxyl group的氫置換成甲基(CH3),甲基化聚醣以MALDI-TOF分析確認甲基化反應是否完全,最後進行聚醣的酸水解將聚醣的糖苷鍵破壞形成單醣,此時單醣在醣苷鍵位置會保留OH,最後將所有單醣進行還原得到目標分析物PMA。本實驗分析兩種聚醣的PMA,Fetuin N-glycan與Lewisa所產生的PMA都能經由LC-MS偵測。總而言之,本實驗可以鑑定出聚醣中不同鍵結的單醣,且此方法不須進行額外的衍生化實驗,與LC-MS平台有很好的相容性。
Glycan is a compound consisting a large number of monosaccharides linked glycosidically. Due to its high complexity of glycan structures on glycoproteins, assessing the configuration and position of glycosidic linkages of a glycan is in great demand. In this study, a method via partially O-methylated alditols (PMAs) from glycan combined with LC-MS analysis is developed. N-glycans were first per-methylated with methyl iodide, and levels of methylation were further confirmed with MALDI-TOF. PMAs were then produced via totally hydrolysis and reduction. PMAs from Fetuin N-glycan and Lewisa were successfully detected by LC-MS analysis. In conclusion, this proposed glycan linkage analysis can be performed without additional derivatization step for GC analysis, and should be suitable for the LC-MS-based platform.
1. Hakomori, S., Traveling for the glycosphingolipid path. Glycoconj J, 2000. 17(7-9): p. 627-47.
2. Lis, H. and N. Sharon, Protein glycosylation. Structural and functional aspects. Eur J Biochem, 1993. 218(1): p. 1-27.
3. Apweiler, R., H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999. 1473(1): p. 4-8.
4. Cummings, R.D., The repertoire of glycan determinants in the human glycome. Mol Biosyst, 2009. 5(10): p. 1087-104.
5. Varki, A. and J.B. Lowe, Biological Roles of Glycans, in Essentials of Glycobiology, A. Varki, et al., Editors. 2009: Cold Spring Harbor (NY).
6. Service, R.F., Cell biology. Looking for a sugar rush. Science, 2012. 338(6105): p. 321-3.
7. Johansen, P.G., R.D. Marshall, and A. Neuberger, Carbohydrates in protein. 3 The preparation and some of the properties of a glycopeptide from hen's-egg albumin. Biochem J, 1961. 78: p. 518-27.
8. Spiro, R.G., Glycoproteins. Adv Protein Chem, 1973. 27: p. 349-467.
9. Yamashita, Y., et al., Alterations in gastric mucin with malignant transformation: novel pathway for mucin synthesis. J Natl Cancer Inst, 1995. 87(6): p. 441-6.
10. Marshall, R.D., The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp, 1974(40): p. 17-26.
11. Bause, E., Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J, 1983. 209(2): p. 331-6.
12. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: p. 631-64.
13. Hebert, D.N., S.C. Garman, and M. Molinari, The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol, 2005. 15(7): p. 364-70.
14. Bennett, E.P., et al., Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012. 22(6): p. 736-56.
15. Brockhausen, I., et al., Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem, 2001. 382(2): p. 219-32.
16. Ma, J. and G.W. Hart, O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics, 2014. 11(1): p. 8.
17. Schallus, T., et al., Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell, 2008. 19(8): p. 3404-14.
18. Lowe, J.B. and J.D. Marth, A genetic approach to Mammalian glycan function. Annu Rev Biochem, 2003. 72: p. 643-91.
19. Mitra, N., et al., N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci, 2006. 31(3): p. 156-63.
20. Jaeken, J. and H. Carchon, Congenital disorders of glycosylation: a booming chapter of pediatrics. Curr Opin Pediatr, 2004. 16(4): p. 434-9.
21. Defaus, S., et al., Mammalian protein glycosylation--structure versus function. Analyst, 2014. 139(12): p. 2944-67.
22. Green, E.D., et al., The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem, 1988. 263(34): p. 18253-68.
23. Tarentino, A.L. and T.H. Plummer, Jr., Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol, 1994. 230: p. 44-57.
24. Tretter, V., F. Altmann, and L. Marz, Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1----3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem, 1991. 199(3): p. 647-52.
25. Carlson, D.M., Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem, 1968. 243(3): p. 616-26.
26. Lescher, A.D., et al., [A simple rapid method for the determination of circulating immune complexes in neoplasms: correlation with the course of the disease]. AMB Rev Assoc Med Bras, 1984. 30(1-2): p. 11-3.
27. Morelle, W. and J.C. Michalski, Analysis of protein glycosylation by mass spectrometry. Nat Protoc, 2007. 2(7): p. 1585-602.
28. Merkle, R.K. and I. Poppe, Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol, 1994. 230: p. 1-15.
29. Zhang, Z., et al., Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chem, 2012. 84(9): p. 4104-10.
30. Rohrer, J.S., et al., Analysis of the N-acetylneuraminic acid and N-glycolylneuraminic acid contents of glycoproteins by high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology, 1998. 8(1): p. 35-43.
31. Hase, S., T. Ikenaka, and Y. Matsushima, Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 1978. 85(1): p. 257-63.
32. Yasuno, S., K. Kokubo, and M. Kamei, New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Biosci Biotechnol Biochem, 1999. 63(8): p. 1353-9.
33. Anumula, K.R., Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal Biochem, 1994. 220(2): p. 275-83.
34. Hara, S., et al., Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem, 1987. 164(1): p. 138-45.
35. Anumula, K.R., Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal Biochem, 1995. 230(1): p. 24-30.
36. Fu, D. and R.A. O'Neill, Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal Biochem, 1995. 227(2): p. 377-84.
37. Oakley, E.T., et al., Preparation, separation and identification of partially methylated alditol acetates for use as standards in methylation analysis. Journal of Carbohydrate Chemistry, 1985. 4(1): p. 53-65.
38. Bruins, A.P., Mechanistic aspects of electrospray ionization. Journal of Chromatography A, 1998. 794(1): p. 345-357.
39. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
40. Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301.
41. Clark, A.E., et al., Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev, 2013. 26(3): p. 547-603.
42. Holcapek, M., R. Jirasko, and M. Lisa, Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A, 2012. 1259: p. 3-15.
43. Kingdon, K., A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Physical Review, 1923. 21(4): p. 408.
44. Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Analytical chemistry, 2000. 72(6): p. 1156-1162.
45. Kang, P., et al., Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom, 2005. 19(23): p. 3421-8.
46. Lowenthal, M.S., E.L. Kilpatrick, and K.W. Phinney, Separation of monosaccharides hydrolyzed from glycoproteins without the need for derivatization. Anal Bioanal Chem, 2015. 407(18): p. 5453-62.