研究生: |
范智傑 Fan, Chih-Chieh |
---|---|
論文名稱: |
陽極氧化鋁靜相之金屬碟式氣相層析管柱研製 Development of Disk-Shaped Gas Chromatography Column Employing Anodic Aluminum Oxide as the Stationary Phase |
指導教授: |
呂家榮
Lu, Chia-Jung |
口試委員: |
呂家榮
Lu, Chia-Jung 陳頌方 Chen, Sung-Fang 李君婷 Li, Chun-Ting 陳壽椿 Chen, Show-Chuen 李慧玲 Lee, Hui-Ling |
口試日期: | 2024/01/31 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 氣相層析 、陽極氧化鋁 、微流道 、奈米孔洞 、碳氫化合物 |
英文關鍵詞: | gas chromatography, anodized aluminum oxide, microchannels, nanopores, hydrocarbons |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400237 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以金屬加工的方式開發出新型的氣相層析(Gas Chromatography, GC)管柱,在以鋁為底材的微流道中,生長陽極氧化鋁(Anodic Aluminum Oxide , AAO)作為氣相層析的靜相。
依照不同的微流道製造方式以及陽極氧化鋁的生長條件,研究分為三大部分。第一部分為在毛細鋁管當中直接生長陽極氧化鋁,第二及第三部分為在沖壓製成的鋁微流道中生長陽極氧化鋁,並封裝製成封閉的流道結構。
第一部分在毛細鋁管當中直接生長陽極氧化鋁,毛細鋁管使用抽拉的方式製成,為所有流道結構當中最穩定且截面最接近理想的圓形者。但因為陽極氧化鋁的生長過程受到電流及電解液的限制,而毛細管的截面不足以提供適當的生長條件,因此在數米的尺度上難以製備出均勻的靜相。作為本研究的首次嘗試,這樣的流道製造方式所得到的初步層析表現,對於後續的研究來說是相當重要的參考。
由於陽極氧化鋁的生長需要相當的電流以及充分攪拌的電解液,第二部分開始嘗試在平板結構上加工出微流道,在硫酸中生長陽極氧化鋁之後,以封裝的方式來完成整個封閉流道。鋁作為一個相當難以焊接的金屬,再加上應用在氣相層析而不能使用加熱會產生揮發性物質的有機封裝材料,流道封裝技術的開發在本研究當中是相當重要的關鍵。第二部分的研究首次有效地做出以陽極氧化鋁作為靜相的氣相層析管柱,並進行了C1-C15直鏈烷類的分離。由於多孔粉末塗布的條件限制,商用氧化鋁管柱的可操作溫度較為受限,本研究則不受此限制,同時分離如此大沸點範圍的分析物在氧化鋁管柱當中為首見。
第三部分則是在第二部分的基礎之上進行管柱結構與陽極氧化鋁表面的優化。第二部分使用的製程雖然能最快速生長最厚的陽極氧化鋁,但其表面極性太強,只能針對烷類化合物進行有效的分離,另外靜相厚度太厚也會對分離的效果造成不利的影響。第三部分研究改為使用草酸二次陽極氧化,使用較薄的靜相,並重新開鋼模,將流道內徑縮小並優化與封裝製程之間的配合。除了在理論板數的表現上有顯著進步之外,能分離的化合物範圍也從只有烷類拓展為烯類、芳香烴以及鹵烷類等化合物,最後再更進一步使用油酸進行表面化學修飾,能夠分離部分含氧及含氮的有機物,在應用上已慢慢接近商用管柱的水準。
In this study, a novel gas chromatography (GC) column was developed through metal processing techniques. Anodic aluminum oxide (AAO) was grown as the stationary phase in microchannels fabricated with aluminum as the substrate.
The research was divided into three main parts, based on different microchannel fabrication methods and AAO growth conditions. The first part involved the direct growth of AAO within capillary aluminum tubes, which were fabricated through a drawing process and exhibited the most stable and nearly ideal circular cross-section among all channel structures. However, due to the limitations imposed by the current and electrolyte during the growth of AAO, the capillary tubes' cross-section was inadequate to provide suitable growth conditions, resulting in challenges to achieving a uniform stationary phase over meter-scale dimensions. Nevertheless, the initial chromatographic performance obtained from this fabrication method was crucial as a preliminary attempt and a valuable reference for subsequent research.
Given that the growth of AAO required significant current and well-agitated electrolytes, the second part of the study explored the fabrication of microchannels on a disk-shaped structure. AAO was grown under appropriate conditions, and the entire enclosed channel was completed through an encapsulating process. Aluminum, being a difficult metal to weld, combined with the requirement of using organic packaging materials that do not generate volatile substances during gas chromatography, made the development of a channel encapsulating technique a crucial key in this study. The second part of the research successfully produced GC columns employing AAO as the stationary phase and achieved the separation of straight-chain hydrocarbons with carbon chain lengths ranging from 1 to 15. Unlike commercially available alumina columns with a limited operating temperature range due to the constraints of porous powder coating, this study overcame such limitations. It demonstrated the separation of such a wide boiling point range of analytes within an alumina column.
Building upon the foundation of the second part, the third part focused on optimizing the column structure and the surface of the AAO. While sulfuric acid hard anodization allowed for the fastest growth of the thickest AAO, its highly polar surface only enabled the effective separation of alkanes. Moreover, the excessive thickness of the stationary phase adversely affected separation performance. In the third part, oxalic acid second anodization was employed, which resulted in a thinner and more delicate stationary phase. The steel mold was redesigned to reduce the inner diameter of the microchannels and optimize the coordination with the encapsulating process. Significant improvements were achieved in terms of theoretical plate numbers, and the range of separable compounds expanded from alkanes to olefins, aromatics, and chlorinated hydrocarbons. Finally, further surface chemical modification is carried out using oleic acid to separate parts of oxygen-containing and nitrogen-containing organic compounds, approaching the level of commercial columns in terms of applications.
1. Frank L. Dorman and Edward B. Overton., Gas Chromatography. Analytical Chemistry 2008 80 (12), 4487-4497
2. James, A. T.; Martin, A. J., Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochemical Journal 1952, 50 (5), 679-690.
3. Bartle, K. D.; Myers, P., History of gas chromatography. TrAC Trends in Analytical Chemistry 2002, 21 (9-10), 547-557.
4. Lipsky, S.; Landowne, R., Gas chromatography—biochemical applications. Annual Review of Biochemistry 1960, 29 (1), 649-668.
5. Jian, R.-S.; Huang, Y.-S.; Lai, S.-L.; Sung, L.-Y.; Lu, C.-J., Compact instrumentation of a μ-GC for real time analysis of sub-ppb VOC mixtures. Microchemical Journal 2013, 108, 161-167.
6. Čajka, T.; Maštovská, K.; Lehotay, S. J.; Hajšlová, J., Use of automated direct sample introduction with analyte protectants in the GC–MS analysis of pesticide residues. Journal of Separation Science 2005, 28 (9‐10), 1048-1060.
7. Ji, Z.; Majors, R. E.; Guthrie, E. J., Porous layer open-tubular capillary columns: preparations, applications and future directions. Journal of Chromatography A 1999, 842 (1-2), 115-142.
8. Amaral, M. S.; Nolvachai, Y.; Marriott, P. J., Comprehensive two-dimensional gas chromatography advances in technology and applications: biennial update. Analytical Chemistry 2019, 92 (1), 85-104.
9. Prebihalo, S. E.; Berrier, K. L.; Freye, C. E.; Bahaghighat, H. D.; Moore, N. R.; Pinkerton, D. K.; Synovec, R. E., Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Analytical Chemistry 2018, 90 (1), 505-532.
10. Liu, Z.; Phillips, J. B., Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. Journal of Chromatographic Science 1991, 29 (6), 227-231.
11. Liao, W.-C.; Ou-Yang, C.-F.; Wang, C.-H.; Chang, C.-C.; Wang, J.-L., Two-dimensional gas chromatographic analysis of ambient light hydrocarbons. Journal of Chromatography A 2013, 1294, 122-129.
12. Stauffer, E.; Dolan, J. A.; Newman, R., Gas chromatography and gas chromatography—Mass spectrometry. Fire Debris Analysis 2008, 235-293.
13. Regmi, B. P.; Agah, M., Micro gas chromatography: an overview of critical components and their integration. Analytical Chemistry 2018, 90 (22), 13133-13150.
14. Wang, A.; Tolley, H. D.; Lee, M. L., Gas chromatography using resistive heating technology. Journal of Chromatography A 2012, 1261, 46-57.
15. Terry, S. C.; Jerman, J. H.; Angell, J. B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices 1979, 26 (12), 1880-1886.
16. Lu, C.-J.; Whiting, J.; Sacks, R. D.; Zellers, E. T., Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Analytical Chemistry 2003, 75 (6), 1400-1409.
17. INFICON. http://products.inficon.com/en-us/product/detail/micro-gc-fusion-gas-analyzer/ (accessed on March 20, 2018).
18. Agilent Technologies. https://www.agilent.com/en/products/gas-chromatography/gcsystems/490-micro-gc-system (accessed on March 20, 2018).
19. Liu, J.; Khaing Oo, M. K.; Reddy, K.; Gianchandani, Y. B.; Schultz, J. C.; Appel, H. M.; Fan, X., Adaptive two-dimensional microgas chromatography. Analytical Chemistry 2012, 84 (9), 4214-4220.
20. Yu, C. M.; Lucas, M.; Koo, J. C.; Stratton, P.; DeLima, T.; Behymer, E. In A high performance hand-held gas chromatograph, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers: 1998; pp 481-486.
21. Garg, A.; Akbar, M.; Vejerano, E.; Narayanan, S.; Nazhandali, L.; Marr, L. C.; Agah, M., Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants. Sensors and Actuators B: Chemical 2015, 212, 145-154.
22. Qin, Y.; Gianchandani, Y. B., A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsystems & Nanoengineering 2016, 2 (1), 1-11.
23. Collin, W. R.; Bondy, A.; Paul, D.; Kurabayashi, K.; Zellers, E. T., μGC× μGC: comprehensive two-dimensional gas chromatographic separations with microfabricated components. Analytical Chemistry 2015, 87 (3), 1630-1637.
24. Jespers, S.; Schlautmann, S.; Gardeniers, H.; De Malsche, W.; Lynen, F.; Desmet, G., Chip-based multicapillary column with maximal interconnectivity to combine maximum efficiency and maximum loadability. Analytical Chemistry 2017, 89 (21), 11605-11613.
25. Ghosh, A.; Johnson, J. E.; Nuss, J. G.; Stark, B. A.; Hawkins, A. R.; Tolley, L. T.; Iverson, B. D.; Tolley, H. D.; Lee, M. L., Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly. Journal of Chromatography A 2017, 1517, 134-141.
26. Li, Y.; Zhang, R.; Wang, T.; Wang, Y.; Wang, Y.; Li, L.; Zhao, W.; Wang, X.; Luo, J., A micro gas chromatography with separation capability enhanced by polydimethylsiloxane stationary phase functionalized by carbon nanotubes and graphene. Talanta 2016, 154, 99-108.
27. Radadia, A. D.; Morgan, R. D.; Masel, R. I.; Shannon, M. A., Partially buried microcolumns for micro gas analyzers. Analytical Chemistry 2009, 81 (9), 3471-3477.
28. Wang, A.; Hynynen, S.; Hawkins, A. R.; Tolley, S. E.; Tolley, H. D.; Lee, M. L., Axial thermal gradients in microchip gas chromatography. Journal of Chromatography A 2014, 1374, 216-223.
29 Reston, R. R.; Kolesar, E., Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system. Journal of Microelectromechanical Systems 1994, 3 (4), 134-146.
30. Kolesar, E.; Reston, R., Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. II. Evaluation, analysis, and theoretical modeling of the gas chromatography system. Journal of Microelectromechanical Systems 1994, 3 (4), 147-154.
31. Radadia, A.; Salehi-Khojin, A.; Masel, R.; Shannon, M., The effect of microcolumn geometry on the performance of micro-gas chromatography columns for chip scale gas analyzers. Sensors and Actuators B: Chemical 2010, 150 (1), 456-464.
32. Matzke, C. M.; Kottenstette, R. J.; Casalnuovo, S. A.; Frye-Mason, G. C.; Hudson, M. L.; Sasaki, D. Y.; Manginell, R. P.; Wong, C. C. In Microfabricated silicon gas chromatographic microchannels: fabrication and performance, Micromachining and Microfabrication Process Technology IV, SPIE: 1998; pp 262-268.
33. Kaanta, B. C.; Chen, H.; Zhang, X., A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector. Journal of Micromechanics and Microengineering 2010, 20 (5), 055016.
34. Haudebourg, R.; Vial, J.; Thiebaut, D.; Danaie, K.; Breviere, J.; Sassiat, P.; Azzouz, I.; Bourlon, B., Temperature-programmed sputtered micromachined gas chromatography columns: An approach to fast separations in oilfield applications. Analytical Chemistry 2013, 85 (1), 114-120.
35. He, B.; Tait, N.; Regnier, F., Fabrication of nanocolumns for liquid chromatography. Analytical Chemistry 1998, 70 (18), 3790-3797.
36. Haghighi, F.; Talebpour, Z.; Sanati-Nezhad, A., Through the years with on-a-chip gas chromatography: a review. Lab on a Chip 2015, 15 (12), 2559-2575.
37. Lu, C.-J.; Steinecker, W. H.; Tian, W.-C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; Potkay, J. A.; Chan, H. K.; Driscoll, J.; Sacks, R. D., First-generation hybrid MEMS gas chromatograph. Lab on a Chip 2005, 5 (10), 1123-1131.
38. Chen, B.-X.; Hung, T.-Y.; Jian, R.-S.; Lu, C.-J., A multidimensional micro gas chromatograph employing a parallel separation multi-column chip and stop-flow μGC× μGCs configuration. Lab on a Chip 2013, 13 (7), 1333-1341.
39. Akbar, M.; Shakeel, H.; Agah, M., GC-on-chip: integrated column and photoionization detector. Lab on a Chip 2015, 15 (7), 1748-1758.
40. Bhushan, A.; Yemane, D.; Trudell, D.; Overton, E. B.; Goettert, J., Fabrication of micro-gas chromatograph columns for fast chromatography. Microsystem Technologies 2007, 13, 361-368.
41. Lewis, P. R.; Wheeler, D. R., Non-planar microfabricated gas chromatography column. Google Patents: 2007.
42. Bhushan, A.; Yemane, D.; Overton, E. B.; Goettert, J.; Murphy, M. C., Fabrication and preliminary results for LiGA fabricated nickel micro gas chromatograph columns. Journal of Microelectromechanical Systems 2007, 16 (2), 383-393.
43. Ghosh, A.; Foster, A. R.; Johnson, J. C.; Vilorio, C. R.; Tolley, L. T.; Iverson, B. D.; Hawkins, A. R.; Tolley, H. D.; Lee, M. L., Stainless-steel column for robust, high-temperature microchip gas chromatography. Analytical Chemistry 2018, 91 (1), 792-796.
44. Noh, H.-s.; Hesketh, P. J.; Frye-Mason, G. C., Parylene gas chromatographic column for rapid thermal cycling. Journal of Microelectromechanical Systems 2002, 11 (6), 718-725.
45. Clayton, D. D., Hydrogen to Gallium. Cambridge University Press: 2003.
46. Hatch, J.; Association, A., American Society for Metals. Metals Park, OH 1984, 143.
47. English, W. H., Aluminium, 13 Al. History 7429, 90-95.
48. Bengough, G.; Stuart, J., Improved process of protecting surfaces of aluminium of aluminium alloys. UK patent 1923, 223 (994).
49. O'sullivan, J.; Wood, G., The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1970, 317 (1531), 511-543.
50. Sheasby, P. G., The surface treatment and finishing of aluminium and its alloys. ASM international: 2001; Vol. 2.
51. Setoh, S.; Miyata, A., Researches on anodic film of aluminium II, anodic behaviours of aluminium in aq solutions of oxalic acid. Sci. Pap. Inst. Phys. Chem. Res. Tokyo 1932, 19 (397), 237.
52. Lee, W.; Park, S.-J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chemical Reviews 2014, 114 (15), 7487-7556.
53. Li, H.; Wu, L.; Zhang, H.; Dai, W.; Hao, J.; Wu, H.; Ren, F.; Liu, C., Self-assembly of carbon Black/AAO templates on nanoporous Si for broadband infrared absorption. ACS Applied Materials & Interfaces 2019, 12 (3), 4081-4087.
54. Choi, M. K.; Yoon, H.; Lee, K.; Shin, K., Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates. Langmuir 2011, 27 (6), 2132-2137.
55. Shan, D.; Huang, L.; Li, X.; Zhang, W.; Wang, J.; Cheng, L.; Feng, X.; Liu, Y.; Zhu, J.; Zhang, Y., Surface plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag nanostructure arrays. The Journal of Physical Chemistry C 2014, 118 (41), 23930-23936.
56. Wang, S.; Tian, Y.; Wang, C.; Hang, C.; Zhang, H.; Huang, Y.; Zheng, Z., otropic thermal conductive interconnectors. ACS Omega 2019, 4 (4), 6092-6096.
57. Chen, D.; Zhao, W.; Russell, T. P., P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano 2012, 6 (2), 1479-1485.
58. Sadilov, I.; Petukhov, D.; Eliseev, A., Enhancing gas separation efficiency by surface functionalization of nanoporous membranes. Separation and Purification Technology 2019, 221, 74-82.
59. Petukhov, D. I.; Napolskii, K. S.; Berekchiyan, M. V.; Lebedev, A. G.; Eliseev, A. A., Comparative study of structure and permeability of porous oxide films on aluminum obtained by single-and two-step anodization. ACS Applied Materials & Interfaces 2013, 5 (16), 7819-7824.
60. Shen, J.; Liu, G.; Ji, Y.; Liu, Q.; Cheng, L.; Guan, K.; Zhang, M.; Liu, G.; Xiong, J.; Yang, J., 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials 2018, 28 (31), 1801511.
61. Pradhan, N.; Duan, H.; Liang, J.; Iannacchione, G., The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 2009, 20 (24), 245705.
62. Diggle, J. W.; Downie, T. C.; Goulding, C., Anodic oxide films on aluminum. Chemical Reviews 1969, 69 (3), 365-405.
63. Keller, F.; Hunter, M.; Robinson, D., Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society 1953, 100 (9), 411.
64. Despić, A., A note on the effect of the electrolyte on the type of growth of anodic oxide on aluminium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1985, 191 (2), 417-423.
65. Thompson, G., Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 1997, 297 (1-2), 192-201.
66. Nishinaga, O.; Kikuchi, T.; Natsui, S.; Suzuki, R. O., Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Scientific Reports 2013, 3 (1), 2748.
67. Kape, J., Unusual anodizing processes and their practical applications. Electroplat. Met. Finish 1961, 14, 407.
68. Furneaux, R.; Rigby, W.; Davidson, A., The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 1989, 337 (6203), 147-149.
69. Thompson, G.; Wood, G., Porous anodic film formation on aluminium. Nature 1981, 290 (5803), 230-232.
70. Kape, J., The use of malonic acid as an anodising electrolyte. Metallurgia 1959, 60, 181-191.
71. Lee, W.; Nielsch, K.; Gösele, U., Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology 2007, 18 (47), 475713.
72. Ono, S.; Saito, M.; Asoh, H., Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochimica Acta 2005, 51 (5), 827-833.
73. Chu, S.; Wada, K.; Inoue, S.; Isogai, M.; Katsuta, Y.; Yasumori, A., Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. Journal of the Electrochemical Society 2006, 153 (9), B384.
74. Mozalev, A.; Surganov, A.; Magaino, S., Anodic process for forming nanostructured metal-oxide coatings for large-value precise microfilm resistor fabrication. Electrochimica Acta 1999, 44 (21-22), 3891-3898.
75. Mozalev, A.; Mozaleva, I.; Sakairi, M.; Takahashi, H., Anodic film growth on Al layers and Ta–Al metal bilayers in citric acid electrolytes. Electrochimica Acta 2005, 50 (25-26), 5065-5075.
76. Güntherschulze, A.; Betz, H., Die Bewegung der Ionengitter von Isolatoren bei extremen elektrischen Feldstärken. Zeitschrift Für Physik 1934, 92 (5-6), 367-374.
77. Verwey, E., Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium. Physica 1935, 2 (1-12), 1059-1063.
78. Mott, N., Chim. Physique 44 172 1947b. Trans. Faraday Soc 1947, 43, 429.
79. Li, F.; Zhang, L.; Metzger, R. M., On the growth of highly ordered pores in anodized aluminum oxide. Chemistry of Materials 1998, 10 (9), 2470-2480.
80. Skeldon, P.; Thompson, G.; Garcia-Vergara, S.; Iglesias-Rubianes, L.; Blanco-Pinzon, C., A tracer study of porous anodic alumina. Electrochemical and Solid-State Letters 2006, 9 (11), B47.
81. Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habazaki, H., A flow model of porous anodic film growth on aluminium. Electrochimica Acta 2006, 52 (2), 681-687.
82. Garcia-Vergara, S.; Le Clere, D.; Hashimoto, T.; Habazaki, H.; Skeldon, P.; Thompson, G., Optimized observation of tungsten tracers for investigation of formation of porous anodic alumina. Electrochimica Acta 2009, 54 (26), 6403-6411.
83. Garcia-Vergara, S.; Skeldon, P.; Thompson, G.; Habakaki, H., Tracer studies of anodic films formed on aluminium in malonic and oxalic acids. Applied Surface Science 2007, 254 (5), 1534-1542.
84. Sato, N., A theory for breakdown of anodic oxide films on metals. Electrochimica Acta 1971, 16 (10), 1683-1692.
85. Jessensky, O.; Müller, F.; Gösele, U., Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters 1998, 72 (10), 1173-1175.
86. Toyo Giken Co Ltd. Tokyo Japan, Proposal of Aluminum Anodizing Line, 1985.
87. Brace, A. W.; Sheasby, P. G., The technology of anodizing aluminum. 1979.
88. Fischer, H.; Koch, L.; Metal, 1952, 6(17): 305-310.
89. Meyer, W. M.; Brown, S. H.; Proc Am Electroplat Soc, 1946, 36: 163-169
90. Culpan, E. A.; Arrowsmith, D. J.; Trans Institute Metal Finishing, 1978, 56(1): 46-50
91. Friedman, A. L.; Brittain, D.; Menon, L., Roles of pH and acid type in the anodic growth of porous alumina. The Journal of Chemical Physics 2007, 127 (15).
92. Hulteen, J. C.; Martin, C. R., A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry 1997, 7 (7), 1075-1087.
93. Maghsodi, A.; Adlnasab, L.; Shabanian, M.; Javanbakht, M., Optimization of effective parameters in the synthesis of nanopore anodic aluminum oxide membrane and arsenic removal by prepared magnetic iron oxide nanoparicles in anodic aluminum oxide membrane via ultrasonic-hydrothermal method. Ultrasonics Sonochemistry 2018, 48, 441-452.
94. De Lange, M. F.; Vlugt, T. J.; Gascon, J.; Kapteijn, F., Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials 2014, 200, 199-215.
95. Roslyakov, I.; Kolesnik, I.; Levin, E.; Katorova, N.; Pestrikov, P.; Kardash, T. Y.; Solovyov, L.; Napolskii, K., Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte. Surface and Coatings Technology 2020, 381, 125159.
96. Cussler, E. L., Diffusion: mass transfer in fluid systems. Cambridge university press: 2009.
97. Okamura, J. P.; Sawyer, D. T., The principles and Practice of GaS-Solid Chromatography With Salt-Modified Adsorbents. Separation and Purification Methods 1972, 1 (1), 409-475.
98. Farnan, I.; Dupree, R.; Forty, A.; Jeong, Y.; Thompson, G.; Wood, G., Structural information about amorphous anodic alumina from 27Al MAS NMR. Philosophical Magazine Letters 1989, 59 (4), 189-195.
99. Coster, D.; Blumenfeld, A.; Fripiat, J., Lewis acid sites and surface aluminum in aluminas and zeolites: a high-resolution NMR study. The Journal of Physical Chemistry 1994, 98 (24), 6201-6211.
100. Han, H.; Park, S.-J.; Jang, J. S.; Ryu, H.; Kim, K. J.; Baik, S.; Lee, W., In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. ACS Applied Materials & Interfaces 2013, 5 (8), 3441-3448.
101. Manzano, C.; Best, J.; Schwiedrzik, J.; Cantarero, A.; Michler, J.; Philippe, L., The influence of thickness, interpore distance and compositional structure on the optical properties of self-ordered anodic aluminum oxide films. Journal of Materials Chemistry C 2016, 4 (32), 7658-7666.
102. Braithwaite, A.; Cooper, M., A study of the surface modification of alumina for GC. Chromatographia 1996, 42, 77-82.
103. Mohnke, M.; Heybey, J., Gas-solid chromatography on open-tubular columns: an isotope effect. Journal of Chromatography A 1989, 471, 37-53.
104. Van Deemter, J.; Zuiderweg, F.; Klinkenberg, A. v., Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science 1956, 5 (6), 271-289.
105. Spangler, G. E., Height equivalent to a theoretical plate theory for rectangular GC columns. Analytical Chemistry 1998, 70 (22), 4805-4816.
106. Spangler, G. E., Theoretical approximation for the linear flow of carrier gas through a rectangular gas chromatogaphic column. Analytical Chemistry 2006, 78 (14), 5205-5207.
107. Azzouz, I.; Lerari, D.; Bachari, K., Porous silica monolithic polymers for micromachined gas chromatography columns: A featured phase for fast and efficient separations of light compounds mixtures. IEEE Sensors Journal 2020, 20 (22), 13236-13244.
108. Agah, M.; Lambertus, G. R.; Sacks, R.; Wise, K., High-speed MEMS-based gas chromatography. Journal of Microelectromechanical Systems 2006, 15 (5), 1371-1378.
109. Vial, J.; Thiébaut, D.; Marty, F.; Guibal, P.; Haudebourg, R.; Nachef, K.; Danaie, K.; Bourlon, B., Silica sputtering as a novel collective stationary phase deposition for microelectromechanical system gas chromatography column: Feasibility and first separations. Journal of Chromatography A 2011, 1218 (21), 3262-3266.
110. Regmi, B. P.; Chan, R.; Agah, M., Ionic liquid functionalization of semi-packed columns for high-performance gas chromatographic separations. Journal of Chromatography A 2017, 1510, 66-72.
111. HP-PLOT Al2O3 S Columns Part Number:19095P-S21 ,https://www.agilent.com/store/ko_KR/Prod-19095P-S21/19095P-S21,(accessed November 27, 2023).
112. Neumann, M. G.; Hertl, W., Surface-modified alumina for hydrocarbon separations. Journal of Chromatography A 1972, 65 (3), 467-475.
113. Zhao, S. Y.; Lee, D.-G.; Kim, C.-W.; Cha, H.-G.; Kim, Y.-H.; Kang, Y.-S., Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bulletin of the Korean Chemical Society 2006, 27 (2), 237-242.
114. Wilson, S. J.; Stacey, M. H., The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies. Journal of Colloid and Interface Science 1981, 82 (2), 507-517.