簡易檢索 / 詳目顯示

研究生: 周鈺禎
Yu-Chen Chou
論文名稱: 雙頻道表面聲波感測系統研製與應用
Preparation and Application of Bi-channel Surface Acoustic Wave Gas Sensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 129
中文關鍵詞: 表面聲波二硫化碳甲醇倒傳遞類神經網路
英文關鍵詞: Surface acoustic wave, carbon disulfide, methanol, back-propogation artificial neural network
論文種類: 學術論文
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用碳六十/ 聚苯乙炔C60-polyphenylacetylene (C60 – PPA)與Polyvinylpyrrolidone(PVP)作為表面聲波感測器(surface acoustic wave ,SAW)之塗佈物質分別對二硫化碳(carbon disulfide,CS2)及甲醇(methanol,CH3OH)進行感測,藉由表面聲波晶片上塗佈物質吸附二硫化碳或甲醇導致表面聲波感測器頻率下降來進行偵測。在此實驗系統中,利用自製介面及自撰程式,可同時偵測兩個感測器(雙頻道)並讀取數據及繪圖。
    在靜相系統研究中首先選擇六種化合物(C60 – PPA、Nafion、PPA、Crytand [2,2]、Polyethene glycol及Polyvinylpyrrolidone)做為表面聲波晶體之塗佈物,用來吸附及偵測CS2及CH3OH,所選擇的六種塗佈物對於偵測CS2及CH3OH的吸附,均為物理性吸附具可逆性,即均可利用氮氣將CS2及CH3OH脫附。結果並發現C60 – PPA作為塗佈物之表面聲波感測器對於CS2的偵測有較好的靈敏度;相同地,以Polyvinylpyrrolidone作為塗佈物之表面聲波感測器對於CH3OH的偵測比其他的塗佈物有較好的靈敏度。此外,並研究塗佈物(C60 – PPA及Polyvinylpyrrolidone)量的多寡對於偵測氣體的影響,結果發現,C60 – PPA塗佈量約為500 ng對於偵測CS2有最佳的靈敏度,而Polyvinylpyrrolidone塗佈量對於偵測CH3OH的訊號值約呈線性關係,我們選擇與C60 – PPA相同的塗佈量(約500 ng)。
    在動相氣體表面聲波感測系統研究上,利用自製的感測工作槽對CS2及CH3OH感測,研究討論其濃度效應、流速效應和再現性。此動相氣體SAW顯示對於CS2及CH3OH感測有很好的靈敏度及再現性。
      在雙頻道SAW系統,以C60 – PPA塗佈的表面聲波感測器偵測CS2,結果發現,其偵測下限為0.4 ppm,再現性(RSD= 3.37﹪,n = 10);相同地,以PVP塗佈的表面聲波感測器偵測CH3OH,其偵測下限為0.05 ppm,再現性(RSD= 0.86﹪,n = 10)。研究中也對於有機物質(丙酮、丙醇、丙胺)是否會干擾CS2及CH3OH偵測進行研究,除了丙胺對於C60 – PPA會造成不可逆吸附會影響CS2的偵測,其餘大部分干擾物對SAW系統影響不大。
    前述實驗中二硫化碳(CS2)、甲醇(CH3OH)個別偵測或混合偵測後,各30組數據經倒傳遞類神經網路(back-propogation artificial neural network,BPN)分析,不管是網路學習或網路測試皆可100﹪將CS2、CH3OH分辨出來,誤判率為0,此結果顯示BPN可成功將其定性化。此外應用多元迴歸分析(multiple regression analysis,MRA)也可成功將CS2及CH3OH定量化。

    C60-polyphenylacetylene(C60-PPA) and polyvinylpyrrolidone(PVP) coated two-channel surface acoustic wave (SAW) detection system was developed and employed to detect carbon disulfide (CS2) and methanol (CH3OH) in this study. The frequency of surface acoustic wave oscillator decreases due to the adsorption of gas molecules on the coated materials of the SAW sensor. The two-channel SAW detection system also includes a homemade computer interface for data acquisition and data processing with a computer program in BASIC.
    In the stationary system, six coating materials (C60-PPA, nafion, PPA, crytand [2,2], polyethene glycol and PVP ) were used to absorb and detect carbon disulfide and methanol gases. The adsorption of all the six coating materials to CS2 and CH3OH was found to be physical adsorption (a reversible type), which could be desorbed by introducing N2 gas.The C60-PPA coated SAW detector exhibited more sensitive to CS2 than the other coating materials. In contrast, the PVP coated SAW detector exhibited more sensitive to CH3OH than the other coating materials. Then , coating load effect on the response of the SAW crystal was investigated and discussed.When 500 ng C60-PPA coated SAW detection system for CS2 showed the best sensitivity. Coating load effect of polyvinylpyrrolidone coated SAW sensor for CH3OH showed the linear relationship so we chosen to coat polyvinylpyrrolidone as much as C60-PPA.
    In SAW mobile gas system, the SAW sensor with the homemade working cell was prepared to detect CS2 and CH3OH. Effects of concentration, flow rate and reproducibility on frequency response of surface acoustic wave sensor were studied and discussed. The SAW gas sensor obviously showed the good sensitivity and reproducibility for CS2 and CH3OH.
    In bi-channel SAW detection system, the C60-PPA coated SAW showed the good detection limit of 0.4 ppm and good reproducibility with RSD of 3.37﹪( n=10) for CS2. Similarly, the PVP coated SAW also showed the good detection limit of 0.05 ppm and good reproducibility with RSD of 0.86﹪(n=10) for CH3OH in bi-channel SAW detection system. The interference effect of organic molecules (aceton, 1-propanol and n-propylamine) on the SAW detection system was negligible except that the absorption of C60-PPA to propylamine was found to be irreversible type.
    The frequency signals from the two channel SAW sensor array were processed by back-propagation artificial neural network(BPN)and multiple regression analysis(MRA).The qualitative and quantitative analyses of CS2 and CH3OH in their mixtures has been successfully realized by using the sensor array,BPN and MRA.

    中文摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 聲波偵測器 1 1-1-1 壓電晶體 1 1-1-2 聲波感測器之分類 4 1-1-2.1 TSM感測器 4 1-1-2.2 SH-APM感測器 5 1-1-2.3 表面聲波感測器 6 1-1-2.4 SH-SAW感測器 7 1-2 表面聲波 10 1-2-1 表面聲波之簡介 10 1-2-2 表面聲波之特性 10 1-2-3 SAW偵測方式 16 1-2-4 表面聲波之原理 18 1-3 表面聲波元件在感測器上之應用 22 1-3-1 表面聲波元件在氣相上的應用 22 1-3-2 表面聲波元件在液相上的應用 26 1-4 類神經網路 30 1-4-1 類神經網路簡介 30 1-4-2類神經網路發展史 34 1-4-3倒傳遞類神經網路 35 1-4-4 網路演算法 37 1-4-5 網路訓練原則 41 1-5 碳六十的簡介 45 1-5-1 碳六十的發現 45 1-5-2 碳六十的基本性質 47 1-5-3 碳六十和氣體分子的交互作用 48 1-6 實驗目的與動機 49 第二章 實驗部分 50 2-1藥品及儀器 50 2-2聚苯乙炔(PPA)及碳六十/聚苯乙炔(C60-PPA)之合成 50 2-3 表面聲波原件的處理 51 2-3-1 表面聲波元件 51 2-3-2 表面塗佈液之配製 52 2-4 實驗系統 52 2-4-1 靜相系統 53 2-4-2 動相模擬系統 54 2-4-3雙頻道實驗系統 55 2-5電腦系統程式 57 2-5-1 相實驗及動相模擬系統程式 57 第三章 結果與討論 64 3-1 靜相氣體感測系統 64 3-1-1 氣體之感應頻率變化情形 64 3-1-2 表面塗佈物種效應 67 3-1-3 表面塗佈量對訊號的影響 67 3-1-4 塗佈狀態的觀察 73 3-2 動相SAW感測系統 76 3-2-1 SAW動相系統中之待測物濃度效應 76 3-2-2動相氣體偵測器的再現性 83 3-2-3 氣體流速效應 86 3-3 雙頻道氣體表面聲波感測器系統 89 3-3-1選擇多頻道石英壓電感測器塗佈物質之選擇 89 3-3-2 濃度效應對感應頻率變化的影響 91 3-3-3 有機干擾物對感應頻率變化的影響 94 3-3-4 溫度效應對感應頻率變化的影響 100 3-3-5 表面聲波晶體對CS2與MeOH氣體偵測之再現性 100 3-4 倒傳遞類神經網路在CS2及MeOH表面聲波感測器上的應用 107 3-4-1 CS2及MeOH個別氣體感測 107 3-4-1.1 隱藏層單元數目對類神經網路學習的影響 108 3-4-1.2 學習速率對類神經網路學習的影響 108 3-4-1.3 類神經網路學習結果 111 3-4-1.4 類神經網路測試結果 111 3-4-1.5 CS2及MeOH個別氣體感測之定量分析 114 3-4-2 CS2及MeOH混合氣體感測 116 3-4-2.1 不同隱藏層單元數目對類神經網路學習的影響 116 3-4-2.2 不同學習速率對類神經網路學習的影響 116 3-4-2.3 類神經網路學習結果 119 3-4-2.4 類神經網路測試結果 119 3-4-2.5 CS2及MeOH混合感測之定量分析 122 第四章 結論 124 參考資料 125

    1. C. Lu, C. A. W. Czanderna, Applications of Piezoelectric Quartz Crystal Microbalance. Elservier Science. New York, 1984.
    2. 吳朗. 電子陶瓷-壓電. 全欣科技圖書, 1994
    3. 吳朗. 感測與轉換原理,元件與應用, 全欣科技圖書, 1992
    4. 彭成鑑, 壓電材料, 科儀新知, 1995, 16, 18-29
    5. 黃錦城,壓電晶體生物感測器之原理與應用,食品工業月刊,1997,29,8-16
    6. H. B. Lin J-S. Shih, Fullerene C60-Cryptand Coated Surface Acoustic Quartz Crystal Sensor for Organic Vapors, Sensor & Actuators, 2003, 92(3), 243-254
    7. Cavic, B. A.; Hayward, G. L.; Thompson, M. Acoustic Waves and The Study Of Biochemical Macromolecules and Cells at The Sensor-liquid Interface. Analyst, 1999, 24, 1405-1420
    8. Michael J. Velleloop, Acoustic Wave Sensors And Their Technology, Ultransonics, 1998, 36, 7-14
    9. H. Wohltjen, D. Ballantine, R. White, S. Martin, A. Ricco, E. Zellers, G Frye, Acoustic Wave Sensor-Theory Design and Physico-Chemical Application, Academic Press: San Diego, 1997, 39
    10. M. Schweyer, J Hilton, J. Munson, J. Andel, A Novel Monolithic Piezoelectric Sensor, Ultrasonics Symposium Proceeding, 1997, 1, 371-374
    11. S. Martin, Gas Sensing with Acoustic Devices, Ultrasonics Symposium Proceeding, 1996, 1, 423-434
    12. Irene Esteban , Corinne Dejous , Study of the Mass Sensitivity of SH-APM Sensors with Maple V, Sensors and Actuators, 1999, 76, 43–50
    13. L. Wu, C. Y. Shen, Tu-Tang Shen, Surface Acoustic Wave Sensors, Chemistry(The Chinese chem. Soc.,Tapipe), 2001, 59, 279-286
    14. K. Nakamura, M. Oshiki, Theoretical analysis of horizontal shear mode piezoelectric surface acoustic waves in potassium niobate, Appl. Phys. Lett., 1997,71, 22, 3203-3205
    15. H. Wohltjen, R. White, D. Ballantine, S. Martin, A. Ricco, E. Zellers, G Frye, Acoustic Wave Sensor-Theory, Design, and Physico-Chemical Application, Academic Press: San Diego, 1997, 39
    16. J. Grate, S. Martin, R. White, Acoustic Wave Microsensors, Anal. Chem., 1993, 65, 940-948
    17. Lord Rayleigh, On Waves Propagated along the Plane Surface of an Elastic Solid, Proc. London Math. Soc., 1885, 17, 4-11
    18. R. M. White, F. W. Voltmer, Direct Piezoelectric Coupling to Surface Elastic Waves, Appl. Phys. Lett., 1965, 7, 314-316
    19. D. Morgan, Surface-Wave Devices for Signal Processing, Amsterdam, 1991, 152
    20. D. P. Morgan, Surface Acoustic Wave Devices and Application I. Introductory Review, Ultrasonics, 1973, 11, 121-131
    21. H. Wohltjen, Mechanism of Operation and Design Considerations for Surface Acoustic Wave Device Vapour Sensors, Sensors and Actuators, 1984, 5, 307-325
    22. M. F. Lewis, Durface Acoustic Wave devices and Applications 6. Oscillators-the next successful surface acoustic wave device?, Ultrasonics, 1974, 12, 115-123
    23. E. A. Ash, Acoustic Aurface Wave, 1978, Speringer-Verlag, New York
    24. B. A. Auld, Acoustic Fields and Waves in Solids, 1973 , Wiley-Interscience, 2th ed., New York
    25. H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description, Anal. Chem., 1979, 51, 1458-1464
    26. H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. II. Gas Chromatography Detector, Anal. Chem., 1979, 51,1465-1470
    27. H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. III. Thermomechanical Polymer Analyzer, Anal. Chem., 1979, 51, 1470-1475
    28. DeQuan Li , Min Ma, Surface acoustic wave microsensors based on cyclodextrin coatings, Sensors and Actuators B, 2000, 69, 75–84
    29. M. Penza, L. Vasaull, SAW NOx gas Sensor using WO3 thin-film sensitive coating, Sensors and Actuators B, 1997, 41, 31-36
    30. J. Wagner, M. von Schickfus, Inductively coupled polymer coate surface acoustic wave sensor for organic vapors, Sensors and Actuators B, 2001, 76, 58-63

    31. G.K. Kannan, A.T. Nimal, U. Mittal, Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection, Sensors and Actuators B, 2004, 101, 328–334
    32. Hung-Bin Lin, Jeng-Shong Shih, Fullerene C60-crytand coated surface acoustic wave quartz crystal sensor for organic vapors, Sensors and Actuators B, 2003, 92, 243-254
    33. F. Josse, F. Bender, Richard W. Cernosek, Guided Shear Horizontal Surface Acoustic WaveSensors for Chemical and Biochemical Detectionin Liquids, Anal. Chem., 2001, 73, 5937-5944
    34. Jun Kondoh, Yoshikazu Matsui, Showko Shiokawa, Identification of electrolyte solutions using a shear horizontal surface acoustic wave sensor with a liquid-flow system, Sensors and Actuators B, 2003, 91, 309–315
    35. Dezhong Lin, Kai Ge, Kang Chen, Lihua Nie, Shouzhuo Yao, Clinical analysis of urea in human blood by couplying a surface acoustic wave sensor with urease extracted from pumpkin seeds, Analytica Chimica Acta, 1995, 307, 61-69
    36. 葉怡成, 類神經網路模式應用與實作, 儒林圖書有限公司, 2000
    37. 張平, 有機氣體石英壓電感測器的研製與應用, 國立台灣師範大學化學研究所博士論文, 2000.
    38. 林昇甫, 洪成安, 神經網路入門與圖樣辨識, 全華科技, 1999
    39. Chang, P.; Shih, J. S., Multi-channel Piezoelectric Quartz Crystal Sensor for Organic Vapours. Ana. Chim. Acta., 2000, 403, 39-48.
    40. Karnin, E. D., A Simple Procedure for Pruning Back- propagation Neural Network, Neural Networks 1990, 1, 295-307.
    41. Chang, T. and Abdel-Ghaffer, K. A. S., A Universal Neural Net with Guaranteed Convergence to Zero System Error, Signal Process. 1992, 40(12), 3022-3031.
    42. Tomasz Baczek, Adam Bucinski, Alexander R. Ivanov, Roman Kaliszan, Artificial Neural Network Analysis for Evaluation of Peptide MS/MS Spectra in Proteomics, Anal. Chem, 2004, 76, 1726-1732
    43. 郭益銘, 應用多變量統計與類神經網路分析雲林沿海地區地下水水質變化, 國立臺灣大學農業工程學研究所碩士論文, 1999
    44. 高全興, 類神經網路於空氣品質短期預測之研究, 國立雲林科技大學環境與安全工程技術研究所碩士論文, 1997
    45. H. W. Kroto, J. R. Hoath, S. C. Bricn, R. F. Curl, R. E. Smalley, C60:Buckminsterfullerene. Nature. 1985, 318, 162
    46. W. Kratschmer, D. R. Huffman, Solid C60 : a new form of carbon. Nature(London). 1990, 347, 354
    47. W. A. Scrirens, P. V. Bedworth, J. M. Tour, Purification of Gram Quanties of C60. A New Inexpensive and Facile Method. J. Am. Chem. Soc. 1992, 114, 7917
    48. J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren, F. J. Hollander, Crystal Structure of Osmylated C60 : Confirmation of the Soccer Ball Framework. Science.1991, 252, 312
    49. T. Arai, H. Suematsu, Defect-Associated Nicroporous Nature of C60 Crystals, J. Phys. Chem., 1993, 97, 6764-6766
    50. M. Fastow, Y. Kozirovski, M. Folman, J. Heidberg, IR Spectra of CO and NO Adsorbed, J. Phys. Chem., 1992, 96, 6126-6128

    51. 游若琳, 碳六十/聚合物石英壓電晶體偵測器之研製與應用, 國立台灣師範大學化學研究所碩士論文, 1999
    52. 凌永建, 陳秋雲, 黃依萍, 化學分析的偵測極限(上), 科儀新知, 1994, 16, 70-83
    53. A. Hirsch, Qiaoying Li, F. Wudl, Globe-trotting Hydrogen on the Surface of the Fullerene Compound C60H6(N(CH2CH2)2O)6, Angew. Chem. Int. ED. Engl., 1991, 30, 1309-1310

    無法下載圖示
    QR CODE