簡易檢索 / 詳目顯示

研究生: 黃雯杰
Wen-Cheh Huang
論文名稱: 眼鏡蛇(Naja atra)的血壓調節研究
The blood pressure regulation of cobra Naja atra
指導教授: 杜銘章
Tu, Ming-Chung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 眼鏡蛇血壓調節重力直立防禦行為
英文關鍵詞: cobra, snake, blood pressure regulation, gravity, orthostasis, stress
論文種類: 學術論文
相關次數: 點閱:187下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 習性偏向樹棲的蛇類,為了避免攀爬時腦部供血不足,其安置於塑膠管內所測得的血壓較其他棲地之蛇種高,約40~70 mmHg;此外,以人為方式將蛇由頭部全身上揚90°時,偏向樹棲的蛇類頭部血壓還能維持50~90 %,而陸棲與水棲蛇類常降至0 %以下。眼鏡蛇 (Naja atra) 為陸棲性蛇類,但禦敵時具有特殊的抬頭擴頸行為,當前半身豎起時,血液循環所面臨的問題也與攀爬時的樹棲性蛇類似;因此預期眼鏡蛇雖為陸棲蛇,但可能具有偏向樹棲性蛇類的生理特徵。如果答案是否定的,特別是眼鏡蛇的血壓並未偏高時,則進一步檢測在受驚嚇刺激後,眼鏡蛇的血壓是否能快速地大幅上升,以因應禦敵時劇烈的姿勢改變?本實驗另選取與眼鏡蛇同科且陸棲的雨傘節(Bungarus multicinctus multicinctus),以及善攀爬的錦蛇 (Elaphe taeniura) 與南蛇 (Ptyas mucosus) 作為比較物種。
    實驗結果發現,眼鏡蛇並不具有類似樹棲性蛇類的生理特徵,其在塑膠管內水平未抬頭時的血壓並不高,眼鏡蛇與雨傘節分別為39與33 mmHg;而善攀爬的錦蛇與南蛇分別為48與46 mmHg。當全身上揚90°時,四種蛇中眼鏡蛇頭部血壓下降的幅度最大,調節能力也最差,頭部血壓僅剩32 %,顯著低於錦蛇與南蛇 (70與80 %)。
    眼鏡蛇頭部受拍擊後血壓可快速上升二倍,平均約70 mmHg,顯著高於同科的雨傘節,而上升的速度則顯著較錦蛇與南蛇快速。眼鏡蛇主動抬頭禦敵時,血壓也是大幅上升,此時頭部血壓能維持在40 mmHg以上;然而當眼鏡蛇在塑膠管中,若前半身被動上揚且無視覺刺激的情況下,頭部血壓平均僅22 mmHg。經注射α與β交感神經抑制劑後,眼鏡蛇抬頭禦敵時的血壓上升明顯被抑制,而抬頭高度也顯著較低;顯示眼鏡蛇受刺激後的升壓反應,交感神經興奮應為主要機制,且抬頭時頭部血壓若無法維持,抬頭高度會受到影響。

    In order to climb without brain hypotension, arboreal snakes tend to maintain a higher (40~70) blood pressure (BP) than other snakes when measured in a plastic tube. Moreover, when passive tilted head up to 90°, the BP of head is still maintained at 50~90 % of pre tilt value. Terrestrial and aquatic snakes frequently drop bellow 0 % when treated as the same way. The Chinese cobra (Naja atra) raise it’s head up quickly when threatened. Although it is a terrestrial snake, the circulation problem of orthostatic posture is the same as climbing behavior of arboreal snakes. Consequently, I speculate that the cardiovascular and BP characteristics of cobras may be similar to that of arboreal snakes. If the speculation is not true, then, the cobra should be able to increase the BP largely and quickly when raising their heads during defending. Another terrestrial snake, banded krait (Bungarus multicinctus multicinctus) and two well climbing snakes, beauty snake (Elaphe taeniura) and rat snake (Ptyas mucosus) were selected for comparison species in this experiment.
    Unlike arboreal snakes, the BP of cobra measured in a plastic tube is not high, only 39 mmHg, so did banded krait (33 mmHg). Whereas The BPs were higher in the other two well climbing snakes (48 and 46 mmHg). When the head was passively tilted up at 90°, the head BP of cobra was dropped to the lowest level among four species, and the average BP of head is only 32 % of pre tilt value, significantly lower than beauty snake and rat snake (70 and 80 %).
    When the cobras were stressed by tapping their heads, the BP increased quickly to two times of the resting value (average, 70 mmHg), which is significantly higher than that of banded krait and faster than that of beauty snake and rat snake. A large and quick increase in BP seen in the cobra was also observed at active head raising. In this situation, the BP at head level was maintained above 40 mmHg. Nevertheless, when the cobra was settled in a plastic tube, the average BP of head is only 22 mmHg during a passive front body tilt without any visual stress. When pretreated with α and β sympathetic inhibitors, increasing in BP seen in the cobra during active head raising was abolished and the height of head raising was low. These results indicate that the mechanism of BP increase in the cobra during head raising is probably dependent on sympathetic excitation induced by mental stress and that blood supply to the head by way of BP increase may play a role in maintaining the height of head raising during defense reaction.

    中文摘要1 英文摘要3 前言5 材料方法11 一、實驗動物簡介11 二、實驗動物採集與飼養12 三、手術方法12 四、實驗操作14 五、統計分析21 結果24 一、實驗物種數量24 二、頭心距離24 三、休息時的血壓與心跳速率24 四、全身不同角度上揚的頭部血壓25 五、受刺激後的血壓與心跳速率28 六、眼鏡蛇被動與主動抬頭的頭部血壓差異29 七、藥物注射後對抬頭高度的影響30 討論31 一、眼鏡蛇與樹棲蛇類的比較31 二、緊迫對血壓測量的影響32 三、蛇類攀爬時的血壓調節34 四、眼鏡蛇抬頭禦敵時的血壓調節37 五、蛇類受威脅時的血壓與心率變化39 六、頭部血壓高低對眼鏡蛇抬頭高度的影響43 七、總結45 參考文獻46 表54 圖62 圖版75 附錄88

    Abrahams, V.C., Hilton, S.M. and Zbrozyna, A.W. (1964). The role of active muscle vasodilatation in the alerting stage of the defence reaction. J. Physiol. 171, 189-202.

    Altimiras, J., Franklin, C.E., and Axelsson, M. (1998). Relationships between blood pressure and heart rate in the saltwater crocodile Crocodylus porosus. J. Exp. Biol. 201, 2235-2242.

    Backhouse, S.S., Harper, A.A., Van Vliet, B.N. AND West, N.H. (1989). Localization and conduction velocities of arterial baroreceptors in the anaesthetized snake. J. Physiol. Lond. 418,135P.

    Berger, P.J. (1987). The reptilian baroreceptor and its role in cardiovascular control. Amer. Zool. 27, 111-120
    Berger, P.J., Evans, B.K., and Smith, D.G. (1980). Localization of baroreceptors and gain of the baroreceptor-heart rate reflex in the lizard (Trachydosaurus rugosus). J. Exp. Biol. 86, 197-209.

    Bonnet, X., Ineich, I. and Shine, R. (2005). Terrestrial locomotion in sea snakes : the effects of sex and species on cliff-climbing ability in sea kraits (Serpentes, Elapidae, Laticauda). Biol. J. Linn. Soc. 85, 433-441.

    Caraffa-Braga, E., Granata, L. and Pinotti, O. (1973). Changes in blood-flow distribution during acute emotional stress in dogs. Pflugers Arch. 339, 203-216.

    Chiu, K.W., Wong, V.C., Chan, M.Y. and Pang, P.K. (1986). Blood pressure homeostasis in the snake, Ptyas korros. Gen. Comp. Endocrinol. 64, 300-304.

    Conklin, D.J., Lillywhite, H.B., Olson, K.R., Ballard, R.E., Hargens, A.R. (1996). Blood vessel adaptation to gravity in a semi-arboreal snake. J. Comp. Physiol. B 165, 518-526.

    Donald, J.A. and Lillywhite, H.B. (1988). Adrenergic innervation of the large arteries and veins of the semiarboreal rat snake (Elaphe obsolete). J. Morphal. 198, 25-31.
    Eklund, B. and Kaijser, L. (1976). Effect of regional alpha- and beta-adrenergic blockade on blood flow in the resting forearm during contralateral isometric handgrip. J. Physiol. 262, 39-50.

    Farmer, C.G. and Hicks, J.W. (2000). Circulatory impairment induced by exercise in lizard Iguana iguana. J. Exp. Biol. 203, 2691-2697.

    Halliwill, J.R., Lawler, L.A., Eickhoff, T.J. Dietz, N.M., Nauss, L.A. and Joyner, M.J. (1997). Forearm sympathetic withdrawal and vasodilatation during mental stress in humans. J. Physiol. 504.1, 211-220.

    Hargens, A.R., Millard, R.W., Pettersson, K. and Johansen, K. (1987). Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329, 59-60.

    Hilton, S.M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. J. Exp. Biol. 100, 159-174.

    Ho, B.Y., Sham, J.S. and Chiu, K.W. (1984). The vasopressor action of the renin-angiotensin system in the rat snake, Ptyas korros. Gen. Comp. Endocrinol. 56, 313-320.

    Jones, D.R. and Milsom, W.K. (1982). Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates. J. Exp. Biol. 100, 51-91.

    Joyner, M.J. and Dietz, M.M. (2003). Sympathetic vasodilation in human muscle. Acta. Physiol. Scand. 177, 329-336.

    Joyner, M.J. and Halliwill, J.R. (2000). Sympathetic vasodilatation in human limbs. J. Physiol . 526.3, 471-480.

    Lillywhite, H.B. (1985a). Behavioral control of arterial pressure in snakes. Physiol. Zool. 58, 159-165.

    Lillywhite, H.B. (1985b). Postural edema and blood pooling in snakes. Physiol. Zool. 58, 759-766.

    Lillywhite, H.B. (1987a). Circulatory adaptations of snakes to gravity. Am.Zool. 27, 81-95.

    Lillywhite, H.B. (1993a). Subcutaneous compliance and gravitational adaptation in snakes. J. Exp. Zool. 267, 557-562.

    Lillywhite, H.B. (1993b). Orthostatic intolerance of viperid snakes. Physiol. Zool. 66, 1000-1014.

    Lillywhite, H.B. (1995). Evolution of cardiovascular adaptation to gravity. J. Gravit. Physiol. 2, 1-4.

    Lillywhite, H.B. (1996). Gravity, blood circulation, and the adaptation of form and function in lower vertebrates. J. Exp. Zool. 275, 217-225.

    Lillywhite, H.B. and Seymour, R.S. (1978). Regulation of arterial blood pressure in Australian tiger snakes. J. Exp. Biol. 75, 65-79.

    Lillywhite, H.B. and Pough, F.H. (1983). Control of arterial pressure in aquatic sea snakes. Am. J. Physiol . 244, 66-73

    Lillywhite, H.B. and Smits, A.W. (1984). Lability of blood volume in snakes and its relation to activity and hypertension. J. Exp. Biol.110, 267-274.

    Lillywhite, H.B. and Gallagher, K.P. (1985). Hemodynamic adjustments to head-up posture in the partly arboreal snake (Elaphe obsolete). J. Exp. Zool. 235, 325-343.

    Lillywhite, H.B. and Donald, J.A. (1994). Neural regulation of arterial blood pressure in snakes. Physiol. Zool. 67, 1260-1283.

    Lillywhite, H.B., Ballard, R.E. and Hargens, A.R. (1996). Tolerance of snakes to hypergravity. Physiol. Zool. 69(2), 293-303.

    Lillywhite, H.B., Ballard, R.E., Hargens, A.R. and Rosenberg, H.I. (1997). Cardiovascular responses of snakes to hypergravity. Gravit. Space. Biol. Bull. Jun, 10(2), 145-52.

    Lillywhite, H.B., Zipple, K.C. and Farrell, A.P. (1999). Resting and maximal heart rates in ectothermic vertebrates. Comp. Biochem. Physiol. 124A, 369-384.

    Lundvall, J., Hillman, J. and Gustafsson, D. (1982). Beta-Adrenergic dilator effects in consecutive vascular sections of skeletal muscle. Am. J. Physiol. 243, H819-H829.

    Lutz, P.L. and Milton, S.L. (2004). Negotiating brain anoxia survival in the turtle. J. Exp. Biol. 207, 3141-3147.

    Martin, J., Sutherland, C.J. and Zbrozyna, A.W. (1976). Habituation and conditioning of the defence reactions and their cardiovascular components in cats and dogs. Pflugers Arch. 365, 34-47.

    Munns, S.L., Hartzler, L.K., Bennett, A.F., and Hicks, J.W. (2004). Elevated intra-abdominal pressure limits venous return during exercise in Varanus exanthematicus. J. Exp. Biol. 207, 4111-4120.

    Munns, S.L., Hartzler, L.K., Bennett, A.F., and Hicks, J.W. (2005). Terrestrial locomotion does not constrain venous return in the American alligator, Alligator mississippiensis. J. Exp. Biol. 208, 3331-3339.

    Pardridge, W.M., Sakiyama, R. and Fierer, G. (1983). Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J. Clin. Invest. 71(4), 900-908.

    Reed, A.S., Tschakovsky, M.E., Minson, C.T., Halliwill, J.R., Torp, K.D., Nauss, L.A. and Joyner, M.J. (2000).

    Skeletal muscle vasodilatation during sympathoexcitation is not neurally mediated in humans. J. Physiol. 525, 253-262.
    Roe, J.H., Hopkins, W.A., Snodgrass, J.W. and Congdon, J.D. (2004). The influence of circadian rhythms on pre- and post-prandial metabolism in the snake Lamprophis fuliginosus. Comp. Biochem. Physiol. 139A, 159-168.

    Sanders, J.S., Mark, A.L. and Ferguson, D.W. (1989). Evidence for cholinergically mediated vasodilation at the beginning of isometric exercise in humans. Circulation. 79, 815-824.

    Secor, S.M., Hicks, J.W. and Bennet, A.F. (2000). Ventilatory and cardiovascular responses of a python (Python molurus) exercise and digestion. J. Exp. Biol. 203, 2447-2454.

    Seymour, R.S. (1987). Scaling of cardiovascular physiology in snakes. Am. Zool. 27, 97-109.

    Seymour, R.S. (2000). Model analogues in the study of cephalic circulation. Comp. Biochem. Physiol. A 125, 517-524.

    Seymour, R.S., Hargens, A.R. and Pedley, T.J. (1993). The heart works against gravity. Am. J. Physiol. 265, R715-R720.

    Seymour, R.S. and Lillywhite, H.B. (1976). Blood pressure in snakes from different habitats. Nature 264, 664-666.

    Seymour, R.S., and Arndt, J.O. (2004). Independent effects of heart-head distance and caudal blood pooling on blood pressure regulation in aquatic and terrestrial snakes. J. Exp. Biol. 207, 1305-1311.

    Skals, M., Skovgaard, N., Abe, A.S, and Wang, T. (2005). Vanous tone and cardiac function in the south American rattlesnake Crotalus durissus: mean circulatory filling pressure during adrenergic stimulation in anaesthetized and fully recovered animals. J. Exp. Biol. 208, 3747-3759.

    Stinner, J.N. (1987). Cardiovascular and metabolic responses to temperature in Coluber constrictor. Am. J. Physiol . 253, 222-227.

    Stinner, J. N. and Ely, D.L. (1993). Blood pressure during routine activity,stress,and feeding in black racer snakes (Coluber constrictor). Am. J. Physiol. 264, 79-84.

    Stephens, G.A., Shirer, H.W., Trank, J.W. and Goetz, K.L. (1983). Arterial baroreceptor reflex control of heart rate in two species of turtle. Am. J. Physiol. 244, 544–552.

    Vera, L.D. and Gonzalez, J. (1999). Power spectral analysis of short-term RR interval and arterial blood pressure oscillations in lizard (Gallotia galloti): effects of parasympathetic blockade. J. Exp. Zool. 283, 113-120.

    Wang, T., Taylor, E.W., Andrade, D. and Abe, A.S. (2001). Autonomic control of heart rate during forced activity and digestion in the snake (Boa constrictor). J. Exp. Biol. 204, 3533-3560.

    Young, B.A., Wassersug, R.J. and Pinder, A. (1997). Gravitational gradients and blood flow patterns in specialized arboreal (Ahaetulla nasuta)and terrestrial (Crotalus adamanteus) snakes. J. Comp. Physiol. B 167, 481-493.

    Zippel, K.C. and Lillywhite, H.B. (1998). Contribution of the vertebral artery to cerebral circulation in the rat snake Elaphe obsolete. J. Morphal. 238, 39-51.

    Zippel, K.C., Lillywhite, H.B. and Mladinich , C.R.J. (2001). New vascular system in reptiles: Anatomy and postural hemodynamics of the vertebral venous plexus in snakes. J. Morphal. 250, 173-184.

    下載圖示
    QR CODE