簡易檢索 / 詳目顯示

研究生: 彭將仁
Peng, Chiang-Jen
論文名稱: 以模式及生長發育數據解釋物種分布在臺灣的情形-以翠斑青鳳蝶為例
What determines a species’ distribution? the case of Graphium agammemnon agammemnon in Taiwan
指導教授: 徐堉峰
Hsu, Yu-Feng
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 氣候暖化模式有效積溫物種分布
英文關鍵詞: climate warming, modeling, effective accumulated temperature, species distribution
DOI URL: https://doi.org/10.6345/NTNU202204455
論文種類: 學術論文
相關次數: 點閱:106下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物的分布及豐量變化常與氣候變化有關聯。族群的向極地遷移(poleward shift)多被認為可能與氣候暖化有關,但族群的分布變化不單是受氣候影響,與其他物種的交互作用也不可忽視,且多項研究僅以模式(modeling)分析模擬物種分布與氣候的關係,少有研究加入生理實驗佐證其結果。近年來臺灣的年均溫上升趨勢明顯,原來分布在南部的熱帶蝶種翠斑青鳳蝶(Graphium agammemnon agammemnon)近年也有族群擴散至中北部的趨勢,但尚未在北部有穩定族群的建立,由於其寄主植物為泛全島性分布,顯見食物來源本身非共分布限制因素。為了探討翠斑青鳳蝶在臺灣分布情況的成因,本研究先進行為期一年的寄主植物(烏心石)物候,確認翠斑青鳳蝶幼蟲食草的取得全年於北、中、南各樣區均無虞,因此可以排除寄主植物物候是造成翠斑青鳳蝶族群範圍受限的因素,溫度對翠斑青鳳蝶幼生期發育影響的生理實驗結果則顯示翠斑青鳳蝶幼蟲的發育速率隨著溫度升高有逐漸增加的趨勢(幼生期的溫度與發育速率回歸方程式為y= 0.0036x - 0.0344, y=發育速率, x=溫度),利用有效積溫研究推算出的發育起點溫度為9.22℃,並由不適低溫探測的結果得知4℃~12℃約為翠斑青鳳蝶幼生期的不適存低溫範圍,而4℃可能為翠斑青鳳蝶幼生期的致死低溫,並以模式分析翠斑青鳳蝶幼生期的分布狀況,在臺灣主要是受到最冷月最低溫(模式貢獻百分比為49.4;AUC=0.805)的影響,且各地的幼蟲分布機率隨著溫度的上升而增高,實際比對中央氣象局在2015年各測站的最冷月最低溫資料,依據文獻與本研究觀察結果發現,溫度在翠斑青鳳蝶幼蟲不適溫度範圍內的地區,至少在當季(冬季)不易記錄到幼蟲個體。本研究驗證了翠斑青鳳蝶的發育會受溫度影響,且不適低溫可能是影響穩定族群建立的關鍵因子。

    It is well known that climate change may affect species’ distribution and abundance. For instance, poleward shift of organisms is often thought to be related to climate warming. However, the change of population distribution is affected not only by climate change, but also the interaction with other species. Most of the researches that deal with the relationship between species distribution and climate are detected by modeling. Few of them employ physiological data to strengthen the result. Recently, mean temperature in Taiwan has risen considerably. A tropical butterfly species Graphium agamemnon agamemnon that used to confine to southern Taiwan has been found in central and northern Taiwan. Stable population of this butterfly is now well established in central Taiwan, but not yet so in the north, even though its host plants are widely distributed all over Taiwan. In order to know what has caused the change of distribution of Graphium agamemnon agamemnon in Taiwan, the phenology of host plants was first investigated, and it was found that fresh tissues are available all over Taiwan through whole year. Consequently, phenology of the host plants may not limit distribution of the butterfly. A gradient thermal experiment was then performed to see how temperature affected their development. Information with modeling was added to simulate the population distribution by past data. The result reveals the developmental rate increased with the increase of temperature (y=0.0036x-0.0344; y=developmental rate, x=temperature). The developmental threshold of the immature stage was 9.22℃. The lower lethal threshold may be 4℃, and the lowest optimal threshold may be 12℃. By modeling, it determined that the distribution of Graphium agamemnon agamemnon was mainly caused by minimum temperature of coldest month (percent contribution:49.4; AUC=0.805). The increase of temperature shows higher probability of larvae’s occurrence. It was found that areas suffering temperatures lower than the lowest optimal threshold were less likely to find larva in the winter. The present study demonstrates that the development of Graphium agamemnon agamemnon is affected by temperature, and low temperature may strongly limit stable population’s distribution.

    摘要……………………………………………………………2 英文摘要………………………………………………………4 前言……………………………………………………………6 材料與方法……………………………………………………10 結果……………………………………………………………17 討論……………………………………………………………23 參考文獻………………………………………………………30 附表……………………………………………………………36

    山中正夫 (1980)。臺灣產蝶類分布 (6)。蝶與蛾,30,1-143。
    楊遠波、劉和義、呂勝由 (1999)。臺灣維管束植物簡誌 (第貳卷)。臺北市﹕行政院農業委員會。
    朱耿平、劉國卿、卜文俊、高玉葆 ( 2013)。生態位模式的基本原理及其在生物多樣性保護中的應用。生物多樣性,21,90-98。
    邱清安、徐憲生、林信輝 (2014)。結合 GBIF 與 MaxEnt 預測臺灣赤楊之適宜生育地。中華水土保持學報,45,198-206。
    李依紋、李培芬(2008)。臺灣氣候變遷衝擊指標之研發-以蝴蝶為例。全球變遷通訊雜誌,60,1-9。
    吳怡欣 (2011)。黃裳鳳蝶之保育生物學研究。國立臺灣大學生物資源暨農學院昆蟲所博士論文,臺北市。
    易傳輝、陳曉鳴、史軍義、周成理 (2007)。光週期和溫度對美鳳蝶幼蟲發育歷期的影響。林業科學研究 ,20,547-550。
    洪榆宸 (2013)。 Graphium sarpedon connectens Fruhstorfer (青帶鳳蝶) 形態, 生活史及溫度對其生長發育之影響,國立宜蘭大學園藝學系學位論文,宜蘭縣。
    孫旻璇(2009)。不同海拔的蝶類多樣性及其有潛力指標物種-以太魯閣國家公園為例。國立臺灣師範大學社會教育學系碩士論文,臺北市。
    徐堉峰(2013)。臺灣蝴蝶圖鑑(上)。臺中市:晨星。
    陳志兵、裴恩樂、俞佩琴、吳國平 (2001)。 玉帶鳳蝶發育起點溫度及有效積溫的研究。 動物學專輯—上海市動物學會 2001年年會論文集。
    陳志兵、顧凌雲、裴恩樂、吳維春 (2004)。麝鳳蝶的發育起點溫度和有效積溫。昆蟲知識,41,480-482。
    陳素瓊、王俊凱、蘇慧珊、楊景堯、鄭韋佑 (2000)。溫度對玉帶鳳蝶 (Papilio polytes pasikrates Fruhstorfer)發育之影響。宜蘭技術學報,5,5-43。
    陳素瓊、歐陽盛芝 (2002)。溫度對琉球青斑蝶(Radena similis similis Linnaeus)(鱗翅目:斑蝶科)發育之影響。台灣昆蟲,22, 237-248
    陳素瓊、歐陽盛芝、塗文賢 (2014)。大鳳蝶的產卵偏好性與幼蟲食葉量初探。國立臺灣博物館學刊, 67,75-95。
    陳鋒蒔 (2011)。淡小紋青斑蝶(Tirumala limniace limniace (Cramer))生物學之研究。國立宜蘭大學園藝學系碩士論文,宜蘭縣。
    馬翊凱 (2008)。黑鳳蝶(Papilio protenor amaura Jordan)生物特性之研究。國立宜蘭大學園藝學系研究所碩士論文,宜蘭縣。
    許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭 (2011)。臺灣氣候變遷科學報告2011。行政院國家科學委員會。
    游書萍 (2008)。柑橘鳳蝶(Papilio xuthus koxinga Fruhstorfer)基礎生物學之探討。國立宜蘭大學園藝學系研究所碩士論文,宜蘭縣。
    歐陽盛芝、塗文賢、 陳素瓊 (2015)。 溫度對大鳳蝶發育的影響。宜蘭大學生物資源學刊,11, 87-104.
    謝進來、朱耀沂 (1989)。溫度對番荔枝斑螟蛾發育之影響。臺東區農業改良場研究彙報,3,69-79。
    羅尹廷(2001)。夸父綠小灰蝶之生態學初探。國立臺灣師範大學生物學系碩士論文,臺北市。
    Breed, G. A., Stichter, S. & Crone, E. E. (2013). Climate-driven changes in northeastern US butterfly communities. Nature Climate Change, 3, 142–145.
    Bozinovic, F., Calosi, P. & Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155–179.
    Calosi, P., Bilton, D. T. & Spicer, J. I. (2010). What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera, Dytiscidae). Journal of Animal Ecology, 79, 194-204.
    Chang, N. T. (1986). Quantitative utilization of selected grasses by fall armyworm (Lepidoptera: Noctuidae) larvae. Chinese Journal of Entomology, 6, 163-175.
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.
    Dennis, R. L. H., Shreeve, T. G. & Van Dyck, H. (2003). Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos, 102, 417–26.
    Dennis, R. L. H., Hodgson, J. G., Grenyer, R., Shreeve, T. G. & Roy, D. B. (2004) Host plants and butterfly biology. Do host plant strategies drive butterfly status? Ecological Entomology, 29, 1–16.
    Executive Yuan, R.O.C. (2014). The Republic of China Yearbook 2014
    Hill, J. K., Thomas, C. D., Fox, R., Telfer, M. G., Willis, S. G., Asher, J. & Huntley, B. (2002). Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 269, 2163–2171.
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. (2005). A northward shift of range margins in British Odonata. Global Change Biology, 11, 502-506.
    McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology, 15, 320−331.
    Oliver, T. H., Thomas, C. D., Hill, J. K., Brereton, T. & Roy, D. B. (2012). Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global Change Biology, 18, 2720-2729.
    Parmesan, C. (1996).Climate and species' range. Nature, 382, 756-766.
    Parmesan, C., Ryrholm, N., Stefanescu, C., Hillk, J. K., Thomas, C. D., Descimon, H., Huntleyk, B., KailaI, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas J. A. & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
    Peterson A. T., Soberón, J., Pearson, R.G., Anderson, R.P., Nakamura, M., Martínez-Meyer, E. & Araújo, M.B. (2011). Ecological niches and geographic distributions. Princeton University Press, New Jersey.
    Pöyry, J., Luoto, M., Heikkinen, R., Kuussaari, M. & Saarinen, K. (2009). Species traits explain recent range shifts of finnish butterflies. Global Change Biology, 15, 732-743.
    Réaumur, R. A. F. de. (1735). Observations du thérmomètre, faites à Paris pendant l'année 1735, comparés avec celles qui ont été faites sous la ligne, à l'Isle de France, à Alger et en quelques-unes de nos isles de l'Amerique, Mémoires de l’Académie des Sciences de Paris, 545–576.
    Venkata Ramana, S. P., Atluri, J. B. & Subba Reddi, C. (2003). Autecology of Tailed Jay butterfly Graphium agamemnon (Lepidoptera: Rhopalocera: Papilionidae). Journal of Environmental Biology, 24, 295-303.
    Soberón, J. & Peterson, A.T. (2005). Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics, 2, 1–10.
    Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
    Vu, N.T., Eastwood, R. & Nguyen, C.T. (2008). Graphium agamemnon Linnaeus (Lepidoptera: Papilionidae), a pest of soursop (Annona muricata L.), in Vietnam: Biology and a novel method of control. Entomological Research, 38, 174-177.

    下載圖示
    QR CODE