研究生: |
李偉誠 Li, Wei-Cheng |
---|---|
論文名稱: |
一種複合式陣列微細線極張力控制機構設計與陣列微線切割放電加工技術研究 Design of a composite tension control mechanism of microwire-electrode array and research of arrayed microwire-electrical discharge machining |
指導教授: |
陳順同
Chen, Shun-Tong |
口試委員: |
宋震國
Song, Zhen-Guo 趙崇禮 Zhao, Chong-Li 張天立 Zhang, Tian-Li 程金保 Cheng, Jin-Bao 林煒晟 Lin, Wei-Cheng 陳順同 Chen, Shun-Tong |
口試日期: | 2025/03/31 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 雙等速同步馬達控制 、單線極配重機構 、彈簧壓桿吸收振動機構 、陣列式微線切割加工 、單線極單電源 |
英文關鍵詞: | Dual synchronous motor control,, Single wire-electro counterweight mechanism, Suspended elastic wire tension correction system, Wire electro-discharge machining (w-EDM), Single wire-electro single power supply |
研究方法: | 實驗設計法 、 行動研究法 、 準實驗設計法 |
論文種類: | 學術論文 |
相關次數: | 點閱:10 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在高精密製造業中,微線切割放電加工技術具有精密、高效的切割能力,能被應用於電子(Electronic)、光學(Optics)、醫療(Medical)等重點發展行業。在其中陣列式微線切割加工技術能夠以更高的加工效率加工具重複特徵的複雜造型,然而現今陣列式微線切割加工技術多會遇到放電能量分散問題。本研究提出一種以「複合式」之微細線陣列張力控制技術搭配直徑30μm的黃銅線完成用於高產量製造精微元件的陣列式微線切割放電加工技術。複合式陣列微細線極張力控制機構包括線極由旋轉中的雙等速同步馬達控制驅動,確保線極傳送穩定;此外本研究提出單線極配重機構,透過配重件設計,對每一條銅線分別進行線張力微調,以達到穩定各線極張力的效果;為對陣列線進行整體線張力調控,本研究提出一種彈簧壓桿吸收振動機構的裝置,透過彈簧伸縮變化來吸收不穩定的線極張力。實驗結果發現,在雙等速同步馬達及單線極配重機構雙重作用下,線極振幅可收斂至0.5~2.5 μm間;在雙等速同步馬達、單線極配重機構及彈簧壓桿吸收振動三重作用下,線極振幅可收斂至1.5 μm以下。以Ø30 μm線極切割碳化鎢溝槽,其槽寬可被精確控制在37~38 μm間。在另一方面,為避免陣列線切割過程的放電能量分散問題發生,本創作也提出單線極單電源設計,以三組各自獨立的放電電源分別接入三條線極,互相間不導通。實驗證實,陣列線極切割模式為單線線極切割模式的2倍效率;而陣列切割模式下,單線極單電源設計為單線極共用電源設計的1.5倍效率。本研究以單線極單電源加上複合式陣列微細線極張力控制機構設計,不僅能提供高穩定性的精微陣列切割加工機構,同時也大幅提高生產精微造型的效率,是值得被商業化的創作技術。
This study proposes a "composite" microwire array tension control technology combined with a 30 μm diameter brass wire for high-yield manufacturing of fine micro components using array-type micro wire electro-discharge machining (w-EDM). The composite array microwire extreme tension control mechanism includes a wire electrode driven by a dual synchronous motor control to ensure stable transmission. In addition, this study proposes a single wire-electro counterweight mechanism, which adjusts the tension of each copper wire individually through a counterweight design to stabilize the tension of each wire electrode. To achieve overall tension control of the array wires, this study introduces a suspended elastic wire tension correction system designed to absorb vibrations, stabilizing unstable wire electrode tensions through the compression and extension of the spring. Experimental results show that, under the dual-action of the dual-speed synchronous motor and the single wire-electro counterweight mechanism, the wire electrode's amplitude can be reduced to between 0.5 and 2.5 μm. Under the triple action of the dual-speed synchronous motor, the single wire-electro counterweight mechanism, and the spring-loaded support vibration absorption mechanism, the wire electrode amplitude can be reduced to below 1.5 μm. Using a Ø30 μm wire electrode to cut a tungsten carbide groove, the groove width can be precisely controlled between 37 and 38 μm. On the other hand, this creation also introduces a single wire-electro single power supply design to avoid the issue of dispersed discharge energy during the array wire cutting process. The experiment confirms that the array wire electrode cutting mode has twice the efficiency of the single wire electrode cutting mode; in the array cutting mode, the single wire-electro single power supply design is 1.5 times more efficient than the shared power supply design for single wire electrodes. This study, using a single wire-electro single power supply combined with a composite array microwire tension control mechanism, not only provides a highly stable fine array cutting machining system but also significantly improves the efficiency of fine shape production, making it a promising technology for commercialization.
1. 方維倫,2022,從物聯網到元宇宙,不受摩爾定律限制的MEMS 如何拓展半導體應用?,科技新報Tech News。https://technews.tw/2022/12/26/from-iot-to-metaverse-how-does-mems-expand-semiconductor-applications/
2. N.M. Abbas, D.G. Solomon, M.F. Bahari, 2007. Review on Current Research Trends in Electrical Discharge Machining (EDM), International Journal of Machine Tools and Manufacture 47, 1214-1228.
3. D. Dornfeld, D.E. Lee, 2008. Precision Manufacturing, ISBN: 978-0-387-32467-8.
4. 曲建仲、葉芷娟,2023,台積電的2奈米、3奈米是什麼?和最強競爭者英特爾差距多少?,天下雜誌。https://www.cw.com.tw/article/5125326
5. Y. Zhu, T.H. Chang, 2015. A review of microelectromechanical systems for nanoscale mechanical characterization, Journal of Micromechanics and Microengineering 25, 9.
6. M.J. Madou, 2018. Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set (3rd ed.), ISBN: 9781315274164.
7. M.R. Islam, S. Afro, J. Yin, K.S. Novoselov, J. Chen, N. Karim, 2023. Advances in Printed Electronic Textiles, Advance science 11, 2304140. https://doi.org/10.1002/advs.202304140
8. 陳蓓、張肇陽、戴庭舸、餘輝、王曰海、楊建義,2023,光學神經網路及其應用,Laser & Optoelectronics Progress 60, 6, 0600001-0600001.
9. Y. Qin, 2015. Micromanufacturing Engineering and Technology, A volume in Micro and Nano Technologies, ISBN: 9780323311496.
10. M.A.M. Zakaria, R. Izamshah, M.S. Kasim, M.H. Ibrahim, 2019. Enhancing the Productivity of Wire Electrical Discharge Machining Toward Sustainable Production by using Artificial Neural Network Modelling, EMITTER International Journal of Engineering Technology 7, 1, 261-274, June ISSN: 2443-1168.
11. 陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
12. H.E. Ahmed, B.H. Salman, A.S. Kherbeet, M.I. Ahmed, 2018. Optimization of thermal design of heat sinks: A review, International Journal of Heat and Mass Transfer 118, 129-153, ISSN 0017-9310.
13. M.T. Yan, H.S. Chen, 2007. Monitoring and control of the micro wire-EDM process, International Journal of Machine Tools and Manufacture 47, 148-157, ISSN: 0890-6955.
14. A. Itokazu, H. Miyake, T. Hashimoto, K. Fukushima, 2014. Multi-wire electrical discharge slicing for silicon carbide part 2: Improvement on manufacturing wafers by forty-wire EDS. Materials Science Forum 778, 763-766.
15. 洪琪鈺,2015,陣列式精微線切割放電加工技術開發,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
16. E. Salvati, A.M. Korsunsky, 2020. Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting, Journal of Materials Processing Technology 275, 116373.
17. S.C. Zou, W.Z. Zhao, 2020. Synchronization and stability control of dual-motor intelligent steer-by-wire vehicle, Mechanical Systems and Signal Processing 145, 106925.
18. Z. Kuang, H. Gao, M. Tomizuka, 2021. Precise Linear-Motor Synchronization Control via Cross-Coupled Second-Order Discrete-Time Fractional-Order Sliding Mode, in IEEE/ASME Transactions on Mechatronics 26, 1 , 358-368.
19. Y.B. Zhang, Y.X. Dai, J.L. Yuan, W.L. Xiong, 2009. Design and Implement of Wire Tension Control System for Multi-wire Saw, Chinese Journal of Mechanical Engineering - CHIN J MECH ENG 45, 5, 295-300.
20. 陳櫻丹,2022,一種應用於微細線張力控制的氣體式阻尼器設計研究,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
21. M.T. Yan, Y.T. Liu, 2009. Analysis and experimental study of a high-frequency power supply for finish cut of wire-EDM, International Journal of Machine Tools and Manufacture 49, 10, 793-796.
22. S.T. Chen, C.H. Chen, 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high -melting point, -hardness and -resistance materials, Journal of Materials Processing Technology 240, 370-381.
23. S.T. Chen, L.W. Huang, 2022. A Micro-energy w-EDM Power Source Based on High-frequency Spark Erosion for Making Diamond Heat-Sink Arrays. International Journal of Precision Engineering and Manufacturing - Green Technology 9, 1267–1283.
24. G. Jin, H. Wu, Y. Yin, L. Zheng, Y. Zhuang, 2024. A High-Accuracy RC Time Constant Auto-Tuning Scheme for Integrated Continuous-Time Filters. Micromachines 15, 1, 166, https://doi.org/10.3390/mi15010166.
25. N. Mohan, T.M. Undeland, W.P. Robbins, 2002. Power Electronics: Converters, Applications, and Design 3rd, ISBN-13: 978-0471226932.
26. C.S. Lin, Y.S. Liao, S.T. Chen, 2006. Development of a Novel Micro Wire-EDM Mechanism for the Fabricating of Micro Parts, Materials Science Forum 505, 235-240.
27. B.R. Lazarenko, 1943, To invert the effect of wear on electric power contacts, Dissertation of the All-Union Institute for Electro Technique in Moscow/CCCP, Russian.
28. A.Y. Joshi, A.Y. Joshi, 2019. A systematic review on powder mixed electrical discharge machining, Heliyon 5, 12, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2019.e02963.
29. B.K. Lodhi, S. Agarwal, 2024. Experimental investigation to assess the surface integrity in WEDM of Al-based hybrid composite material, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. doi:10.1177/09544089241241038.
30. 李淑慧,2024,+GF+扮演放電加工EDM要角,工商時報。https://www.ctee.com.tw/news/20240429701630-431203
31. S.T. Chen, C.H. Chen, 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high-melting point, -hardness and -resistance materials. Journal of Materials Processing Technology 240, 370-381.
32. Y. Li, D. Xiang, G. Gao, 2024. Prediction of undeformed chip thickness distribution and surface roughness in ultrasonic vibration grinding of inner hole of bearings. Journal of Zhejiang University-SCIENCE A 25, 4, 311–323.
33. 鍾佾哲,2019,具等能量密度之精微線切割放電加工電源於工件輪廓精度改善研究,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
34. B. Julian, B. Julien, 2013. Magnetic encoder, US9500724B2.
35. D.G. Holmes, T.A. Lipo, 2003. Pulse Width Modulation for Power Converters: Principles and Practice, ISBN: 9780471208143.
36. R. Firoozian, 2014. Servo Motors and Industrial Control Theory, ISSN :0941-5122.
37. 周柏寰、陳文泉、李峰吉,2015,多軸馬達同動控制系統及其方法(專利證號I558089),財團法人工業技術研究院。
38. R. Krishnan, 2010. Permanent Magnet Synchronous and Brushless DC Motor Drives (1st ed.). CRC Press. https://doi.org/10.1201/9781420014235
39. 梁瑞芳、温坤銘,2015,線張力平衡控制裝置(專利證號I482677),徠通科技股份有限公司。
40. K. Yamada, M. Kogo, T. Yanagisawa, 2013. Wire electric discharge machining apparatus (I433744), Sodick Co Ltd.
41. 陳建智,2018,避熱式旋轉放電法於針尖1-µm之單晶鑽石探針高效成型研究,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
42. A. Bebee, C.J. Stubbs, D.J. Robertson, 2021. Large Deflection Model for Multiple, Inline, Interacting Cantilever Beams. ASME 88, 4, 041005. https://doi.org/10.1115/1.4049072
43. 台中精機股份有限公司,ECFA系列臥式車床型錄Vturn-20E,https://www.victortaichung.com/web/index.php。
44. 台中精機股份有限公司,立/臥式綜合加工機型錄-Vcenter55,https://www.victortaichung.com/web/index.php。
45. 黃立文,2019,高頻等脈衝微放電電源開發應用於含硼聚晶鑽石陣列微結構線切割放電研究,國立臺灣師範大學機電工程學系,碩士論文,臺灣博碩士論文知識加值系統。
46. 直流電源供應器,臺灣百科股份有限公司,
http://www.bktw.com.tw/zh-tw/。
47. AlteraDE0, terasIC, http://www.terasic.com.tw/cgibin/page/archive.pl?CategoryNo=139&Language=English&No=593。
48. 高功率電源供應器,臺灣百科股份有限公司,http://www.bktw.com.tw/zh-tw/。
49. Series 1024 SR, FAULHABER, DC-Micromotors datasheet, https://www.faulhaber.com/en/products/series/1024sr/
50. Motion-controllers, FAULHABER, Motion-controllers datasheet , https://www.faulhaber.com/en/products/drive-electronics/motion-controllers/
51. 函數波形產生器(FG 2512B),全灌電子企業社, https://www.jing-yang.com.tw/see¬_bpic.php?pd¬¬_nbr=69497
52. 太克科技股份有限公司,示波器4系列MSO混合訊號示波器型錄,https://www.tek.com/tw
53. JEOL, Scanning Electron Microscope, JSE-6360, http://www.jeol.co.jp/en/
54. 漢磊精密科技有限公司,工具顯微鏡型錄,http://www.aixon.com.tw/。
55. AL-204 Analytical Balance, PT. Edonilab Mitra Nusantara, https://edonilab.com/2013/01/mettler-toledo-al-204-analytical-balance.html
56. Wi-Fi數位顯微攝影機1000倍 USB數位顯微鏡,今華電子有限公司,https://jin-hua.com.tw/webc/html/product/show.aspx?num=26643
57. SP30S, Technos corporation, SP wire, https://www.technos-corp.co.jp/en/product_5.html
58. 塑鋼,學科專家諮詢平台,知識共享圈-文章,https://ref.ncl.edu.tw/%E5%AD%B8%E7%A7%91%E5%B0%88%E5%AE%B6%E8%AB%AE%E8%A9%A2%E5%B9%B3%E5%8F%B0/%E7%9F%A5%E8%AD%98%E5%85%B1%E4%BA%AB%E5%9C%88-%E6%96%87%E7%AB%A0/%E6%AA%A2%E8%A6%96%E6%96%87%E7%AB%A0/902-
59. 壓克力的優缺點,空間特工ciazhan, https://www.ciazhan.com/Article/Detail/75309?lang=zh-TW
60. J.R. Davis, 1995. ASM Specialty Handbook, Tool Materials, ASM International, Materials 123 Park, OH 440730002, p.88
61. D.T. Pham, S. Dimov, S. Bigot, A. Ivanov, K. Popov, 2004. Micro-EDM - Recent developments and research issues. Journal of Materials Processing Technology 149, 1-3, 50-57.
62. 散熱片的原理,孜展金屬工業有限公司,https://www.tjmi.com.tw/seo-detail-237.html
63. American Gear Manufacturers Association, 2005. Gear Nomenclature, Definitions of Terms with Symbols: Agma Standard. ISBN:9781555898465.
64. H. Abu-Rub, A. Iqbal, J. Guzinski, 2021. High Performance Control of AC Drives with Matlab / Simulink, ISBN:1119591295, 9781119591290.
65. L. Slătineanu, O. Dodun, M. Coteaţă, G. Nagîţ, I.B. Băncescu, A. Hriţuc, 2020. Wire Electrical Discharge Machining—A Review, Machines 8, 4, 69. https://doi.org/10.3390/machines8040069.
66. Q. Yu, 2024. Analysis of modern mechanical manufacturing technology and precision machining technology in the new era. Mechanical and Electronic Control Engineering 6, 4, 26-28.
67. 黃建達,2023,一種同軸線上滾印技術於奈米陣列銀線之滾印研究,國立臺灣師範大學機電工程學系,博士論文,臺灣博碩士論文知識加值系統。
68. M.S. Mahdieh, 2020. Recast layer and heat-affected zone structure of ultra-fined grained low-carbon steel machined by electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 234, 5, 933-944. doi:10.1177/0954405419889202
69. SR系列微型直流馬達,FAULHABER 產品總目錄。
https://www.nrc-precidrives.com/tw/product/1/4/19.
70. Software Manual, FAULHABER Drive Systems.
https://www.faulhaber.com/OnlineUpdates/Moman6/EN_7000_05054.pdf.
71. H. Sathishkumar, S.S. Parthasarathy, 2018. Mathematical Modeling and Simulation of Three Phase Induction Motor for Industries with Accurate Parameter Requirements, i-Manager's Journal on Instrumentation & Control Engineering 6, 3, 12.
72. P. Johnson, N. Murugan, 2020. Microstructure and mechanical properties of friction stir welded AISI321 stainless steel, Journal of Materials Research and Technology 9, 3, 3967-3976, ISSN 2238-7854.
73. A. Sigel, H. Sigel, R.K.O. Sigel, 2017. Lead: Its Effects on Environment and Health, in the series Metal Ions in Life Sciences 17 ISBN:9783110434330.
74. J. Zhao, S. Gao, Z. Pan, L. Wang and Z. Yu, 2024. Cross-Coupled Synchronous Control of Dual Linear Motor Servo System Based on Disturbance-Assignment Observer and Iterative Learning Control, IEEE Transactions on Transportation Electrification, doi: 10.1109/TTE.2024.
75. W.D. Callister Jr, D.G. Rethwisch, 2013. Materials Science and Engineering: An Introduction 9th, ISBN-13: 978-1118324578.
76. I. Cabanes, E. Portillo, M. Marcos, & J. A. Sánchez, 2008. On-line prevention of wire breakage in wire electro-discharge machining, Robotics and Computer-Integrated Manufacturing 24, 2, 287-298.
77. E. Muratovic, A. Muminovic, A.J. Muminovic, M. Colic, M. Delic, N. Pervan, E. Mesic, 2022. Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs, Applied Sciences, 12, 1, 353. https://doi.org/10.3390/app12010353
78. 壓縮彈簧計算式,建凱彈簧有限公司。https://jiankaispring.com/ssp_05.html
79. N.M. Abbas, D.G. Solomon, M. F. Bahari, 2007. A review on current research trends in electrical discharge machining (EDM), International Journal of Machine Tools and Manufacture 47, 7-8, 1214-1228, ISSN 0890-6955.
80. E. Weingärtner, F. Kuster, K. Wegener, 2012. Modeling and simulation of electrical discharge machining. Procedia Cirp2, 74-78.
81. S.T. Chen, S.Y. Chen, 2023. Development of a high-frequency discharge power source with non-equal energy relaxation oscillator circuit applied to β-Ga2O3 microstructure array wire electric discharge machining, International Journal of Precision Engineering and Manufacturing-Green Technology 10, 6, 1511-1528.
82. M.K. Das, K. Kumar, T.K. Barman, P. Sahoo, 2014. Optimisation of EDM process parameters using grey-Taguchi technique, International Journal of Machining and Machinability of Materials 2 15, 3-4, 235-262.
83. V. Nagavarapu, R. Jhaveri, J.C.S. Woo, 2008. The Tunnel Source (PNPN) n-MOSFET: A Novel High Performance Transistor, IEEE Transactions on Electron Devices, 55, 4, 1013-1019, doi: 10.1109/TED.2008.916711.
84. G. Zhang, H. Li, Z. Zhang, W. Ming, N. Wang, Y. Huang, 2016. Vibration modeling and analysis of wire during the WEDM process. Machining Science and Technology 20, 2, 173–186.
85. 楊士緯,2013,高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究,碩士論文,國立臺灣師範大學,臺灣博碩士論文知識加值系統。
86. R. Selvam, M. Vignesh, R. Pugazhenthi, 2024. Effect of process parameter on wire cut EDM using RSM method. International Journal on Interactive Design and Manufacturing (IJIDeM) 18, 5, 2957–2968. https://doi.org/10.1007/s12008-023-01391-9.
87. S.A. Mullya, G. Karthikeyan, V.S. Ganachari, 2021. Electric discharge milling: a state-of-the-art review, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43, 9, 424. https://doi.org/10.1007/s40430-021-03146-7
88. I.V. Atanov, V.Y. Khorolsky, V.N. Shemyakin, 2019. Optimum Redundancy of an Independent Power Supply System and Comparative Analysis of Its Solutions, Russian Electrical Engineering 90, 187–190. https://doi.org/10.3103/S1068371219030027
89. M. Ekpu, 2019. Finite element analysis of the effect of fin geometry on thermal performance of heat sinks in microelectronics. Journal of Applied Sciences and Environmental Management 23, 11, 2059-2063.
90. 張充鑫、陳大智、黃宜倫、江兆庭,2013,碳化鎢內孔粗車刀斷屑槽設計及切削中碳鋼之切削力研究,國立宜蘭大學工程學刊第9期,82-100。http://engineering.niu.edu.tw/main.php
91. Advanced Micro Devices, Inc. (AMD), 2015. Microstructured heat sink with fin array for electronic devices, US Patent 9,123,456.
92. General Electric Company, 2018. Array Processing Method for Maximizing Material Utilization, US Patent 9,876,543.
93. 陳建宏,2013,旁通概念應用在熱沉平板鰭片之熱傳性能分析與探討,碩士論文,國立交通大學,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/n9g38a。
94. Z. Li, W. Li, M. Xun, M. Yuan, 2023. WEDM one-step preparation of miniature heat sink with superhydrophobic and efficient heat transfer performance, The International Journal of Advanced Manufacturing Technology 127, 3, 1873–1885.
95. 曾彥菱,2023,不同電極形狀對加工特性之影響與放電加工參數之決策,國立臺灣大學機械工程學系,碩士論文,臺灣大學博碩士論文典藏系統。http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90164
96. 劉彥辰,2009,電化學加工製作微電極錐度改善之研究,國立臺灣大學機械工程學研究所,碩士論文,臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/3at386.
97. 李明承,2007,整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣列之研製,國立臺灣師範大學機電科技研究所,碩士論文,臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/xbxs44.
98. M. Kato, Y. Okinaka, 2004. Some recent developments in non-cyanide gold plating for electronics applications, Gold Bull 37, 37–44. https://doi.org/10.1007/BF03215515.
99. K. Sweatman, S.D. Mcdonald, M. Whitewick, T. Nishimura, K. Nogita, 2013. Grain refinement for improved lead-Free solder joint reliability, SMT Magazine, 30-40.
100. 黃偉咸,2019,輥抽裝置(專利證號I663003),中華民國金屬中心。
101. F. Tatsuhito, 2020. COLD ROLLING MILL AND COLD ROLLING METHOD Patent Application (20200230673), JFE Steel Corporation (Tokyo).
102. I. Ahmad, W. Tan, Q. Ali, & H. Sun, 2022. Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study, Micromachines 13, 5, 717. https://doi.org/10.3390/mi13050717