研究生: |
臧明瑄 |
---|---|
論文名稱: |
金毛杜鵑DNA甲基化變異與適應性演化 DNA methylation polymorphism and adaptive evolution of Rhododendron oldhamii |
指導教授: | 黃士穎 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 金毛杜鵑 、DNA甲基化多型性 、正向天擇 、適應性演化 、MSAP |
英文關鍵詞: | Rhododendron oldhamii, DNA methylation polymorphism, positive selection, adaptive evolution, methylation-sensitive amplified polymorphism(MSAP) |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金毛杜鵑(Rhododendron oldhamii)為廣泛分布的台灣特有種杜鵑,其生長的棲地氣候條件不同,主要開花季節也有差異。已知DNA甲基化可調節基因表現,使個體面臨環境變化時,表現型產生變異,以適應環境。本研究欲檢測金毛杜鵑DNA甲基化的變異情形,探討在天擇作用之下,DNA甲基化的多型性與族群適應性演化之關係。利用Methylation-sensitive amplified polymorphism (MSAP)分子標誌掃描基因組,檢測18個族群,共205個體,篩選出有甲基化變異的基因座,估算多種族群遺傳參數與分析族群結構,並篩選出受天擇選汰的甲基化基因座。此外,結合氣象因子,檢測受到天擇選汰的基因座是否與環境因子有關連。結果顯示,金毛杜鵑各族群有DNA甲基化多型性,可分成2個分群;某些族群受天擇選汰基因座有連鎖不平衡的現象,形成分歧型天擇;以FST中性檢測方式篩選出13個受正向天擇選汰的甲基化基因座,其中2個與環境因子平均風速有關連。這些結果皆顯示金毛杜鵑各族群受到不同棲地環境因子的天擇壓力,而有正向天擇作用,造成族群有DNA甲基化多型性的分化與適應性演化的現象。
Rhododendron oldhamii is an endemic rhododendron species that widespread but discontinuously distributed in Taiwan. Environmental variables among habitats and population flowering times are different. Because epigenetic processes such as DNA methylation may contribute to environmentally induced phenotypic variation by modifying gene expression, individuals can adapt to the changing environment. Therefore, the main purpose of this study is to understand the variations in DNA methylation patterns and the adaptive evolution of R. oldhamii. We used methylation-sensitive amplified polymorphism (MSAP) molecular markers to scan the whole genome for 205 individuals from 18 populations. Based on MSAP genotyping data, we can explore the population structure and population adaptive evolution under natural selection. Furthermore, with the environmental variables incorporated, we can detect the association between the environmental variables and the MSAP polymorphisms. The results showed that R. oldhamii have DNA methylation polymorphism. The Bayesian cluster analysis revealed that 18 populations could be assigned to two clusters. We find 13 outliers under positive selection, of which two are associated with environmental variables such as mean wind speed. Moreover, populations had different linkage disequilibrium blocks of outlier loci. These results indicated that R. oldhamii populations were mainly affected by different selection pressures of habitats, resulting in differentiation of DNA methylation polymorphism within and among populations. Therefore, the results suggested that different environmental variables of habitats would promote distinct adaptive evolution and population differentiation in R. oldhamii.
紀瑋婷,2009。臺灣西半部金毛杜鵑開花韻律分析與族群分布之研究。臺灣大
學。生態學與演化生物學研究所碩士論文。
張又敏,2006。金毛杜鵑開花模式之研究。靜宜大學生態學系碩士論文。
Angers B., Castonguay E. and Massicotte R. 2010.
Environmentally induced phenotypes and DNA
methylation : how to deal with unpredictable conditions
until the next generation and after. Molecular Ecology
19:1283-1295.
Antao T. and Beaumont M. A. 2011. Mcheza: a workbench to
detect selection using dominant markers. Bioinformatics
27:1717-1718.
Burn J. E., Bagnall D. J., Metzger J. D., Dennis E. S. and
Peacock W. J. 1993. DNA methylation, vernalization, and
the initiation of flowering. PNAS 90:287-291.
Beaumont M. A. and Nichols R. A. 1996. Evaluating loci for
use in the genetic analysis of population structure.
Proceedings of the Royal Society of London Series B:
Biological Sciences 263:1619-1626.
Beaumont M. A. and Balding D.J. 2004. Identifying adaptive
genetic divergence among populations from genome scans.
Molecular Ecology. 13:969-980.
Bossdorf O., Richards C. L. and Pigliucci M.2008.
Epigenetics for ecologists. Ecology Letters 11:106-115.
Cubas P., Vincent C. and Coen E. 1999. An epigenetic
mutation responsible for natural variation in floral
symmetry. Nature 401:157-161.
Crews D., Gore A. C., Hsu T. S., Dangleben N. L., Spinetta
M., Schallert T., Anway M. D. and Skinner M. K. 2007.
Transgenerational epigenetic imprints on mate
preference. PNAS 104:5942-5946.
Doyle, J. J.and Doyle, J. L. 1987. A rapid DNA isolation
procedure for small quantities of fresh leaf tissue.
Phytochemical Bulletin 19:11-15.
Evanno G., Regnaut S. and Goudet J. 2005. Detecting the
number of clusters of individuals using the software
STRUCTURE : a simulation study. Molecular Ecology
14:2611-2620.
Excoffier L. and Lischer H. E. L. 2010. Arlequin suite ver
3.5: a new series of programs to perform population
genetics analyses under Linux and Windows. Molecular
Ecology Resources 10:564-567.
Fisher R. A. 1935. Design of Experiments, London: Oliver &
Boyd.
Finnegan E. J., Genger R. K., Peacock W. J. and Dennis E.
S.1998. DNA methylation in plants. Annual Review of
Plant Physiology and Plant Molecular Biology 49:223-247.
Finnegan E. J., Kovac K. A., Jaligot E., Sheldon C. C.,
Peacock W. J. and Dennis E. S.2005. The down regulation
of FLOWERING LOCUS C (FLC) expression in plants with
low levels of DNA methylation and by vernalization
occurs by distinct mechanisms. The Plant Journal 44:420-
432.
Falush D., Stephens M., Pritchard J. K. 2007. Inference of
population structure using multilocus genotype data:
dominant markers and null alleles. Molecular Ecology
Notes 7:574-578.
Foll M. and Gaggiotti O. 2008.A genome-scan method to
identify selected loci appropriate for both dominant
and codominant markers: a Bayesian perspective.
Genetics 180:977-993.
Feder J. L., Egan S. P. and Nosil P. 2012. The genomics of
speciation-with-gene-flow. Trends in Genetics 28:342-
350.
Gonzalgo M.L., Liang G., Spruck C.H., Zingg J. M., Rideout
W. M. and Jones P.A. 1997. Identification and
characterization of differentially methylated regions
of genomic DNA by Methylation-sensitive arbitrarily
primed PCR. Cancer Research 57:594-599.
Goudet J. 1999. PCA-Gen Version 1.2, Institute of Ecology,
Biology Building, UNIL, Lausanne, Switzerland.
[http://www2.unil.ch/popgen/softwares/pcagen.htm].
Hewitt G. M. 1996. Some genetic consequences of ice ages,
and their role in divergence and speciation. Biological
Journal of the Linnean Society 58:247-276.
Hewitt G. M. 2000. The genetic legacy of the Quaternary ice
ages. Nature 405:907-913.
Hwang S.Y., Lin T. P., Ma C. S., Lin C. L., Chung J. D. and
Yang J. C. 2003.Postglacial population growth of
Cunninghamia konishii(Cupressaceae) inferred from
phylogeographical and mismatch analysis of chloroplast
DNA variation. Molecular Ecology 12:2689-2695.
Hubisz M. J., Falush D., Stephens M. and Pritchard J.K.
2009. Inferring weak population structure with the
assistance of sample group information. Molecular
Ecology Resources 9:1322-1332.
Herrera C. M. and Bazaga P. 2010.Epigenetic differentiation
and relationship to adaptive genetic divergence in
discrete populations of the violet Viola cazorlensis.
New Phytologist 187:867-875.
Joost S., Bruford M. W., Després L., Conord C., Erhardt G.
and Taberlet P. 2007. A spatial analysis method (SAM)
to detect candidate loci for selection: towards a
landscape genomics approach to adaptation. Molecular
Ecology 16:3955-3969.
Joost S., Kalbermaten M. and Bonin A. 2008. Spatial
analysis method (SAM): a software tool combining
molecular and environmental data to identify candidate
loci for selection. Molecular Ecology Resources 8:957-
960.
Kalisz S. and Purugganan M. D. 2004. Epialleles via DNA
methylation: consequences for plant evolution. TRENDS
in Ecology and Evolution 19(6):278-287.
Lira-Medeiros C. F., Parisod C., Fernandes R. A., Mata C.
S., Cardoso M. A. and Ferreira P. C. G. 2010.
Epigenetic variation in mangrove plants occurring in
contrasting natural environment. PLoS ONE 5: Issue 4.
Manning K., Tőr M., Poole M., Hong Y., Thompson A. J., King
G. J.,Giovannoni J. J. and Seymour G. B. 2006. A
naturally occurring epigenetic mutation in a gene
encoding an SBP-box transcription factor inhibits
tomato fruit ripening. Nature Genetics 38: 948–952.
Matzke M., Kanno T., Huettel B, Daxinger L. and Matzke A.
J. M. 2007. Targets of RNA-directed DNA methylation.
Current Opinion in Plant Biology 10:512-519.
Marfil C. F., Camadro E. L. and Masuelli R. W. 2009.
Phenotypic instability and epigenetic variability in a
diploid potato of hybrid origin, Solanum ruiz-
lealii.BMC Plant Biology 9:21.
Nybom H. 2004. Comparison of different nuclear DNA markers
for estimating intraspecific genetic diversity in
plants. Molecular Ecology 13:1143-1155.
Nosil P., Funk D. J. and Ortiz-Barrientos D. 2009.
Divergent selection and heterogeneous genomic
divergence. Molecular Ecology 18:375-402.
Nadeau N. J., Whibley A., Jones R. T., Davey J. W.,
Dasmahapatra K. K., Baxter S. W., Quail M. A., Joron
M., H. ffrench-Constant R., Blaxter M. L., Mallet J.
and Jiggins C. D. 2012.Genomic islands of divergence in
hybridizing Heliconius butterflies identified by large-
scale targeted sequencing. Proceedings of the Royal
Society of London Series B: Biological Sciences 367:
343-353.
Pritchard J. K., Stephens M. and Donnelly P. 2000.
Inference of population structure using multilocus
genotype data. Genetics155:945-959.
Paun O., Bateman R. M., Fay M. F., Hedren M., Civeyrel L.,
Chase M.W. 2010. Stable epigenetic effects impact
adaptation in allopolyploid orchids (Dactylorhiza:
Orchidaceae). Molecular Biology and Evolution 27:2465–
2473.
Reyna-López G. E., Simpson J. and Ruiz-Herrera J. 1997.
Differences in DNA methylation patterns are detectable
during the dimorphic transition of fungi by
amplification of restriction polymorphisms. Molecular
and General Genetics 253:703-710.
Sherman J. D. and Talbert L. E. 2002. Vernalization-induced
changes of the DNA methylation pattern in winter wheat.
Genome 45:253-260.
Salmon A., Clotault J., Jenczewski E., Chable V. and
Manzanares-Dauleux M. J. 2008. Brassica oleracea
displays a high level of DNA methylation polymorphism.
Plant Science 174:61-70.
Shen H., He H., Li J., Chen W., Wang X., Guo L., Peng Z.,
He G, Zhong S., Qi Y., Terzaghi W. and Deng X. W.
2012. Genome-wide analysis of DNA methylation and gene
expression changes in two Arabidopsis ecotypes and
their reciprocal hybrids. The Plant Cell 24: 875–892.
Tsukada M. 1966. Late pleistocene vegetation and climate in
Taiwan (Formasa). PNAS 55:543-548.
Tsukada M.1967.Vegetation in subtropical Formosa during the
pleistocene glaciations and the holocene.
Palaeogeography, Palaeoclimatology, Palaeoecology 3:49-
64.
Taberlet P. and Cheddadi R. 2002. Quaternary refugia and
persistence of biodiversity. Science 297:2009-2010.
Trap-Gentil M. V., Hébrard C., Lafon-Placette C., Delaunay
A., Hagège1 D., Joseph C., Brignolas F., Lefebvre M.,
Barnes S. and Maury S. 2011. Time course and amplitude
of DNA methylation in the shoot apical meristem are
critical points for bolting induction in sugar beet and
bolting tolerance between genotypes. Journal of
Experimental Botany 62 (8): 2585-2597.
Villanueva B., Dekkers J. C. M., Woolliams J. A. and Settar
P. 2004. Maximizing genetic gain over multiple
generations with quantitative trait locus selection and
control of inbreeding. Journal of Animal Science
82:1305-1314.
Wu S. H., Hwang C. Y., Lin T. P., Chung J. D., Cheng Y. P.
and Hwang S. Y. 2006. Contrasting phylogeographical
patterns of two closely related species, Machilus
thunbergii and Machilus kusanoi (Lauraceae), in Taiwan.
Journal of Biogeography 33: 936-947.
Yi C., Zhang S., Liu X., Bui H. T. and Hong Y. 2010. Does
epigenetic polymorphism contribute to phenotypic
variances in Jatropha curcas L.? BMC Plant Biology 10:
Issue 1.