簡易檢索 / 詳目顯示

研究生: 林永富
Lin, Yong-Fu
論文名稱: 氣候變異對日本鰻苗捕獲量減少之探討
Climate variability responsible for poor recruitment of the Japanese glass eel (Anguilla japonica)
指導教授: 吳朝榮
Wu, Chau-Ron
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 日本鰻魚鹽度鋒面間熱帶輻合區聖嬰南方震盪
英文關鍵詞: Japanese eel, salinity front, ITCZ, ENSO
DOI URL: http://doi.org/10.6345/DIS.NTNU.DES.001.2019.B07
論文種類: 學術論文
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用衛星觀測和同化模式資料探討在東亞區域日本鰻(Anguilla japonica)鰻苗捕獲量之變化。研究發現當西北太平洋區域的鹽度鋒面極端的往南移,會造成日本鰻的產卵場也會跟著異常地往低緯度移動,導致東亞區域的捕獲量在1983、1992和1998有大量減少的現象。進一步發現此現象並不是完全由聖嬰現象所造成,且並不是強聖嬰事件就會發生,例如2015/16的強聖嬰事件就沒有發生鹽度鋒面極端的往南移和鰻苗大量減少的現象。然而,這些極端的事件與氣候組合模態(Combination mode,簡稱C-mode)有很好的相關性。結果顯示因為受到C-mode氣候變化的影響,改變了西北太平洋的降雨型態,也導致鹽度鋒面極端的往南移動,進而造成日本鰻魚產卵場往南移動,不利於鰻苗隨著海流(北赤道洋流-黑潮系統)傳輸到東亞區域,進而嚴重地影響到東亞國家的鰻苗捕獲量。最後本研究提出藉由海表溫(sea surface temperature)的變化做為預測指標,可以幫助提前預測鰻苗在東亞區域的捕獲量。

    Satellite data and assimilation products are used to investigate fluctuations in the catch of Japanese glass eel (Anguilla japonica) in eastern Asian countries. It has been reported that the salinity front has extended farther south, which has shifted the eel’s spawning grounds to a lower latitude, resulting in lower glass eel catches in 1983, 1992, and 1998. Interannual variability in the glass eel catch is strongly correlated with the combination mode (C-mode), but not with the El Niño–Southern Oscillation or supper El Niño events. For example, the 2015/15 El Niño events is a super El Niño events, but it did not result in extremely poor recruitment of Japanese eel in East Asia. The spawning grounds accompanied by the salinity front extend farther south during the C-mode of climate variability, and eel larvae fail to join the nursery in the North Equatorial Current (NEC) and Kuroshio, resulting in poor recruitment in East Asia. We have proposed an appropriate sea surface temperature index to predict Japanese eel larval catch in the East Asia area.

    Abstract I 摘要 II 目錄 III 圖目錄 V 第一章、緒論 1 1.1 地理位置介紹 1 1.2 文獻回顧 1 1.3 研究動機 4 第二章、方法與資料 5 2.1 AVISO資料 5 2.2 NOAA 海表溫度資料 5 2.3 GPCP雨量資料 6 2.4 SODA模式鹽度資料 6 2.5 JCOPE-2模式資料 7 2.6 PDO和PTO氣候指標 7 2.7 聖嬰/反聖嬰年之定義 8 2.8 鰻苗模擬模式設計 9 2.9 玻璃鰻捕獲資料 11 第三章、結果 12 3.1 ITCZ對鹽度鋒面之影響 12 3.2 ITCZ對日本鰻魚產卵點之影響 13 3.3 氣候變異對ITCZ極端南移事件的影響 16 第四章、討論 20 4.1 強聖嬰年就會造成極端減少的捕獲量嗎? 20 4.2 不同的環境改變在1997/98和2015/16強聖嬰事件 20 4.3 不同的環境改變對日本鰻苗傳輸之影響 23 第五章 結論 26 附錄A 51 附錄B 59

    Aoyama, J., Watanabe, S., Miller, M. J., Mochioka, N., Otake, T., Yoshinaga, T., & Tsukamoto, K. Spawning sites of the Japanese eel in relation to oceanographic structure and the West Mariana Ridge. PLoS ONE, 9, e88759 (2014).
    Carton, J. A., & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999-3017 (2008).
    Chang, Y. L., & Oey, L. Y. The Philippines-Taiwan Oscillation: Monsoon-Like Interannual Oscillation of the Subtropical -Tropical Western North Pacific Wind System and Its impact on the ocean. J. Clim., 25, 1597-1618 (2012).
    Chang, Y. L., Sheng, J., Ohashi, K., Béguer-Pon, M., and Miyazawa, Y. Impacts of interannual ocean circulation variability on Japanese eel larval migration in the western North Pacific ocean. PloS one, 10, e0144423 (2015).
    Chang, Y.-L., Miyazawa Y., & Béguer-Pon M. The dynamical impact of mesoscale eddies on migration of Japanese eel larvae. PloS one, 12 (2017).
    Chang, Y. L. K., Miyazawa, Y., Béguer-Pon, M., Han, Y. S., Ohashi, K., & Sheng, J. Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean. Scientific reports, 8, 5013 (2018).
    Chen, L., Li, T., Wang, B., & Wang, L. Formation mechanism for 2015/16 super El Niño. Scientific Reports, 7, 2975 (2017).
    Chen, G., & Lin, H. Impact of El Niño/La Nina on the seasonality of oceanic water vapor: A proposed scheme for determining the ITCZ, Mon. Weather Rev., 133, 2940-2946 (2005).
    Cheng, P. W., & Tzeng, W. N. Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar. Ecol.-Prog. Ser., 131, 87-96 (1996).
    Dekker W. Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fish. Manag. Ecol. 10, 365-376 (2003).
    Graham, N. E., & Barnett, T. P. Sea surface temperature, surface wind divergence, and convection over tropical oceans, Science, 238, 657-659 (1987).
    Han Y. S., Tzeng W. N., Liao I. C. Time Series Analysis of Taiwanese Catch Data of Japanese Glass Eels Anguilla japonica: Possible Effects of the Reproductive Cycle and El Niño Events. Zool. Stud., 48, 632-639 (2009).
    Huffman, G. J., & Bolvin, D. T. GPCP Version 2.2 Combined Precipitation Data Set Documentation, Laboratory for Atmospheres, NASA, 46 (2012).
    Jacoby D., Gollock M. Anguilla japonica. The IUCN Red List of Threatened Species Version 2015-3 (2014) <www.iucnredlist.org> Downloaded on 15 September 2015.
    Kim, H., Kimura, S., Shinoda, A., Kitagawa, T., Sasai, Y., and Sasaki, H. Effect of El Niño on migration and larval transport of the Japanese eel (Anguilla japonica). ICES J. Mar. Sci., 64, 1387-1395 (2007).
    Kimura, S., Tsukamoto, K. & Sugimoto T. A model for the larval migration of the Japanese eel: roles of the trade winds and salinity front, Mar. Biol., 119, 185-190 (1994).
    Kimura, S., Inoue, T. & Sugimoto, T. Fluctuation in the distribution of low‐salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fish. Oceanogr., 10, 51-60 (2001).
    Kimura, S. & Tsukamoto, K. The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment, Deep-Sea Res. II, 53, 315-325 (2006).
    Lau, K., Wu, H. and Bony, S. The Role of Large-Scale Atmospheric Circulation in the Relationship between Tropical Convection and Sea Surface Temperature. J. Clim., 10, 318-392 (1997).
    Leduc, G., Vidal, L., Tachikawa, K. & Bard, E. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?, Quat. Res., 72, 123-131 (2009).
    Linsley, B. K., Dunbar, R. B., Wellington, G. M. & Mucciarone, D. A. A coral‐based reconstruction of Intertropical Convergence Zone variability over Central America since 1707, J. Geophys. Res. Oceans, 99, 9977-9994 (1994).
    Newman, M., Compo, G. P. & Alexander, M. A. ENSO-forced variability of the Pacific Decadal Oscillation, J. Clim., 16, 3853-3857 (2003).
    Otake, T., et al. Diel vertical distribution of Anguilla japonica leptocephali., Ichthyol. Res., 45, 208-211 (1998).
    Paek, H., Yu, J. Y., & Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 1848-1856 (2017).
    Qiu, B., & Lukas, R. Seasonal and interannual variability of the north equatorial current, the Mindanao current and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12315-12330 (1996).
    Qu, T., & Lukas, R. The bifurcation of the north equatorial current in the Pacific. J. Phys. Oceanogr. , 33, 5-18 (2003).
    Shinoda A. et al. Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Rev. Fish Biol. Fish., 21, 591-611 (2011).
    Stuecker, M. F., Timmermann, A., Jin, F.-F., McGregor, S. & Ren, H.-L. A combination mode of the annual cycle and the El Niño/Southern Oscillation, Nat. Geosci., 6, 540-544 (2013).
    Tsukamoto, K. Discovery of the spawning area for Japanese eel. Nature, 356, 789-791 (1992).
    Tsukamoto, K., et al. Seamounts, new moon and eel spawning: the search for the spawning site of the Japanese eel. Environ. Biol. Fish., 66, 221-229 (2003).
    Tsukamoto, K. Spawning of eels near a seamount. Nature, 439, 929 (2006).
    Zenimoto, K., Kitagawa, T., Miyazaki, S., Sasai, Y., Sasaki, H., & Kimura, S. The effects of seasonal and interannual variability of oceanic structure in the western Pacific North Equatorial Current on larval transport of the Japanese eel Anguilla japonica. J. Fish Biol., 74, 1878-1890 (2009).

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE