簡易檢索 / 詳目顯示

研究生: 唐凡
Tang, Fan
論文名稱: 語意分類及其應用於兩輪機器人控制
Semantic Classification and Its Application in Two-wheeled Robot Control
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 語意分類卷積神經網路長短期記憶
英文關鍵詞: Semantic classification, CNN, LSTM
DOI URL: http://doi.org/10.6345/NTNU202001402
論文種類: 學術論文
相關次數: 點閱:136下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在建構一語意分類系統,使指令不單局限在單一詞彙或單一描述,例如指令旋轉之後前進及前進之前旋轉視為同樣意思,使機器人不是單純的判斷關鍵詞的順序而是使機器人能夠自行判斷語意後執行動作,讓所接受的指令更為靈活且多樣。語意分類系統建構是先以文字語句作為訓練資料,將詞彙透過詞嵌入的方式轉為數據。接著,使用神經網路進行分類訓練,主要以卷積類神經網路(Convolutional Neural Network, CNN)、長短期記憶(Long Short-Term Memory, LSTM)這兩種神經網路進行建模,CNN 具有優秀的特徵擷取及處理能力,LSTM 則在序列表現異,透過實驗比較這兩種方法,並選擇結果較好的架構應用於兩輪機器人。

    The purpose of this paper is to construct a semantic classification system.The instructions are not limited to a single vocabulary or a single description, and the instructions that the robot can accept are more flexible. The construction of semantic classification system mainly needs to be modeled with two types of neural networks: Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). CNN has excellent feature extraction and processing power, and LSTM has excellent performance in sequence. For comparison, some experiments are performed for two neural networks. Finally, the semantic classification is implemented in a two-wheeled robot.

    謝 辭 i 中文摘要 ii 英文摘要 iii 目 錄 iv 圖 目 錄 vi 表 目 錄 viii 第一章  緒論 1 1.1 研究動機與背景 1 1.2 研究目的 2 1.3 研究方法 2 1.4 論文架構 2 第二章  文獻探討與回顧 4 2.1 語意分類 4 2.2 傳統文本表示方法 5 2.2.1 One-Hot Representation 5 2.2.2 TF-IDF 5 2.3 近代文本表示方法 6 2.4 卷積類神經網路 10 2.5 長短期記憶 15 第三章  語意分類系統建立與兩輪機器人平台 19 3.1 實驗平台 19 3.2 分類模型建立 23 3.2.1 文本資料前處理 23 3.2.2 詞向量 24 3.2.3 CNN模型建構 27 3.2.4 LSTM模型建構 29 3.2.5 損失函數 30 第四章 效能評估與實驗結果 32 4.1 實驗資料 32 4.2 模型評估指標 32 4.3 CNN分類模型實驗 35 4.4 LSTM分類模型實驗 43 4.5 語意分類系統應用於兩輪機器人實驗 49 第五章  結論 80 5.1 結論 80 5.2 未來展望 80 參考文獻 81 自 傳 84 學 術 成 就 85

    [1] B. Pang, L. Lee, and S. Vaithyanathan , ‘‘Thumbs up?: Sentiment Classification Using Machine Learning Techniques,’’ Annual Meeting of the ACL Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, Vol. 10, pp.79-86, 2002
    [2] Q. Ye, R. Law, B. Gu, and W. Chen. ‘‘The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings.’’ Computers in Human Behavior, 27, 634-639, 2011
    [3] Q. Ye, Z. Zhang, and R. Law, ‘‘Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches,’’ Expert Systems with Applications, Vol. 36, No. 3, pp. 6527-6535, 2009
    [4] J. P. Turian, L. Ratinov, and Y. Bengio, “Word representations: A simple and general method for semi- supervised learning,” in ACL 2010, Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, July 11- 16, 2010, Uppsala, Sweden, pp. 384–394, 2010.
    [5] F. Liu, F. Liu, and Y. Liu, “A supervised framework for keyword extraction from meeting transcripts,” IEEE Trans. on Audio, Speech, and Language Processing, VOL. 19, NO. 3, March 2011.
    [6] M. Xu, L. He, and X. Lin, ‘‘A refined TF-IDF algorithm based on channel distribution information for Web news feature extraction,’’ in Proc. 2nd Int. Workshop Educ. Technol. Comput. Sci., pp. 15–19, 2010
    [7] G. E. Hinton, “Learning distributed representations of concepts,” in Proceedings of the eighth annual conference of the cognitive science society, vol. 1, p. 12,Amherst, MA, 1986.
    [8] M. Li, Q. Lu, Y. Long, and L. Gui, “Inferring affective meanings of words from word embedding,” IEEE Trans. Affective Comput., vol. 8, no. 4, pp. 443–456,
    2017.
    [9] L. Xiang, J. Yu, C. Yang, D. Zeng, and X. Shen, “A word-embeddingbased steganalysis method for linguistic steganography via synonymsubstitution,” IEEE Access, vol. 6, pp. 64 131–64 141, 2018.
    [10] Q. Wang et al., “Privacy-preserving collaborative model learning: The case of word vector training,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2381– 2393 , doi: 10.1109/TKDE. 2018.2819673, 2018.
    [11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.
    [12] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “ Bert: Pre-training of deep bidirectional transformers for language understanding.” arXiv preprint arXiv:1810.04805, 2018.
    [13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, L. Kaiser, and I. Polosukhin “Attention is all you need.” In Advances in Neural Information Processing Systems, pp. 6000–6010, 2017.
    [14] Q. V. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Proceedings of the 31th International Conference on Machine Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pp. 1188–1196, 2014.
    [15] T. He, W. Huang, Y. Qiao, and J. Yao, “Text-attentional convolutional neural network for scene text detection,” IEEE transactions on image processing, vol. 25, no. 6, pp.2529-2541, 2016.
    [16] X. Ren, Y. Zhou, Z. Huang, J. Sun, X. Yang, and K. Chen, ‘‘A novel text structure feature extractor for Chinese scene text detection and recognition,’’ IEEE Access, vol. 5, pp. 3193–3204, 2017.
    [17] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
    SIGDAT, a Special Interest Group of the ACL, pp. 1746–1751, 2014.
    [18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
    [19] Martin Sundermeyer, Hermann Ney, and Ralf Schluter, ¨ “From feedforward to recurrent LSTM neural networks for language modeling,” IEEE Trans. Audio, Speech and Language Processing, vol. 23, no. 3, pp. 517–528, 2015.
    [20] H. Palangi et al., ‘‘Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 24, no. 4, pp. 694–707, Apr. 2016.
    [21] B. Shuai, Z. Zuo, and G. Wang. Quaddirectional 2d-recurrent neural networks for image labeling. IEEE Signal Processing Letters, 22(11):1990–1994, 2015.
    [22] P. Squartini, Paolinelli, “Comparing different recurrent neural architectures on a specific task from vanishing gradient effect perspective,” in Networking, Sensing and Control, pp. 380–385, 2006.
    [23] 周建華, 具影像特徵之 LSTM 深度遞迴類神經網路之日射量預測 , 碩士論文,國立臺灣師範大學電機工程學系,台灣,2019
    [24] 林哲宇, 以 CNN 為基礎之語音辨識系統及應用於兩輪平衡車的控制 , 碩士論文,國立臺灣師範大學電機工程學系,台灣,2019
    [25] https://cloud.google.com/speech-to-text/ , 2020
    [26] Y. Zhang and B. Wallace, ‘‘A sensitivity analysis of (and practitioners’ Guide to) convolutional neural networks for sentence classification.’’ 2016 [Online].
    Available: https://arxiv.org/abs/1510.03820

    下載圖示
    QR CODE