簡易檢索 / 詳目顯示

研究生: 張祐嘉
Chang, Yu-Chia
論文名稱: 運用邏輯閘建構全細胞生物感測器視覺化檢測汞離子
Developing Whole-cell Biosensors for Visual Detection of Mercury Ions Using Logic Gate Operations
指導教授: 葉怡均
Yeh, Yi-Chun
口試委員: 葉怡均
Yeh, Yi-Chun
陳頌方
Chen, Sung-Fang
蔡伸隆
Tsai, Shen-Long
口試日期: 2024/06/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 全細胞生物感測器邏輯閘HrpR/HrpS分裂的螢光蛋白分裂的內含肽汞離子定向進化冷凍乾燥粉末
英文關鍵詞: Whole-Cell Biosensor, Logic Gate, HrpR/HrpS, Split Fluorescent Protein, Split Intein, Mercury Ion, Directed Evolution, Freeze-Dried Powder
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401142
論文種類: 學術論文
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邏輯閘是基於布林邏輯運算的基礎元件,使用AND-gate系統進行設計的全細胞生物感測器結合多重輸入端進行調控,能有效提升全細胞生物感測器的靈敏性及專一性。本篇在大腸桿菌中研究三種邏輯閘元件,分別為調控型的HrpR/HrpS及重組型的Spy Tag/Spy Catcher與分裂的內含肽 (split intein),成功在大腸桿菌內展現出符合AND-gate邏輯運算的能力,並詳細討論HrpR/HrpS系統及Spy Tag/Spy Catcher系統在汞離子檢測中的表現。透過比較不同的螢光報導基因:分裂的紅螢光蛋白 (sfCherry3C)及分裂的綠螢光蛋白 (sfGFP),最終發現Spy Tag/Spy Catcher系統在重組sfGFP有顯著的效率,與單質體系統中以MerR基因組進行汞離子檢測有同等的螢光強度,並得到更低的偵測極限,低於臺灣對於工業排放廢水中汞的法規濃度。為了拓展汞離子檢測上的應用,本研究對調控蛋白MerR進行突變的定向進化,增進了對於汞離子的檢測能力,提升螢光強度以提升視覺化檢測的能力,最終可應用在真實水樣中檢測低濃度的汞離子;同時也開發出使用冷凍乾燥進行菌種的保存,能在室溫或是冰箱內進行儲存,探討冷凍乾燥粉末一個月內的保存能力,增加現場檢測的應用。

    The AND-gate system, capable of performing Boolean logic operations and incorporating multiple inputs for modulation, emerges as a promising avenue for enhancing sensitivity and specificity in whole-cell biosensors. This study investigates three types of logic gate elements in Escherichia coli: HrpR/HrpS, Spy Tag/Spy Catcher, and the split intein. It successfully demonstrates the capability of performing AND-gate logic operations in E. coli. The performance of the HrpR/HrpS system and the Spy Tag/Spy Catcher system in mercury ion detection is discussed in detail. By comparing different fluorescent reporter genes sfCherry3C and sfGFP, it was ultimately found that the Spy Tag/Spy Catcher system had significant efficiency in recombining sfGFP. This system achieved fluorescence intensity equivalent to the single-plasmid system using the MerR regulator gene for mercury ion detection. LOD is below Taiwan's regulatory concentration for mercury in industrial wastewater discharge. To expand the application of mercury ion detection, this study employed directed evolution of the regulatory protein MerR, enhancing its mercury ion detection capability and improving fluorescence intensity for visual detection. This allows for the detection of low concentrations of mercury ions in real water samples. Additionally, the study developed a method for preserving bacterial strains using freeze-drying, enabling storage at room temperature or in a refrigerator. The preservation capability of the freeze-dried bacterial powder was investigated over a month, increasing the applicability for on-site detection.

    致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 Introduction 1 1-1 基因工程  1 1-2 全細胞生物感測器 3 1-3 汞汙染 5 1-4 汞的檢測方法 6 1-5 邏輯閘平台 9 1-5-1 邏輯閘 (Logic gate)介紹 9 1-5-2 HrpR/HrpS 10 1-5-3 分裂的螢光蛋白 (split fluorescent protein) 11 1-5-4 Spy Tag/Spy Catcher 12 1-5-5 Protein-splicing intein (蛋白質剪接內含肽) 14 1-6 Mer操作組 16 Chapter 2 Materials and Equipment 20 2-1實驗藥品 20 2-2實驗儀器 22 Chapter 3 Methods 23 3-1 培養過程 23 3-2 數據測量及處理 23 3-3 真實樣品檢測 24 3-4 冷凍乾燥粉末製備 24 Chapter 4 Results and Discussions 25 4-1 汞離子邏輯閘平台 25 4-1-1 前言 25 4-1-2 單質體汞離子感測器 26 4-1-3 HrpR/HrpS汞離子感測器 28 4-1-4 Spy Tag/Spy Catcher汞離子感測器 31 4-1-5 Protein-splicing intein系統建立 36 4-2 突變 39 4-2-1 前言 39 4-2-2 MerR突變體建立 39 4-2-3 HrpR/HrpS突變體測定 43 4-2-4 Spy Tag/Spy Catcher突變體測定 46 4-3 真實樣品測試 49 4-4 冷凍乾燥粉末測試 51 Chapter 5 Conclusion 53 附錄 55 i. 引子 55 ii. 質體 58 iii. 建構質體紀錄 64 iv. 菌種 75 Reference 79

    1. Crick, F., Central dogma of molecular biology. Nature biotechnology 1970, 227 (5258), 561-563.
    2. Lanigan, T. M.; Kopera, H. C.; Saunders, T. L., Principles of genetic engineering. Genes 2020, 11 (3), 291.
    3. Amrofell, M. B.; Rengarajan, S.; Vo, S. T.; Tovar, E. S. R.; LoBello, L.; Dantas, G.; Moon, T. S., Engineering E. coli strains using antibiotic-resistance-gene-free plasmids. Cell Reports Methods 2023, 3 (12).
    4. Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; Keasling, J. D., BglBrick vectors and datasheets: a synthetic biology platform for gene expression. Journal of biological engineering 2011, 5, 1-14.
    5. Bollella, P.; Gorton, L., Enzyme based amperometric biosensors. Current opinion in Electrochemistry 2018, 10, 157-173.
    6. Conroy, P. J.; Hearty, S.; Leonard, P.; O’Kennedy, R. J. In Antibody production, design and use for biosensor-based applications, Seminars in cell & developmental biology, Elsevier: 2009; pp 10-26.
    7. Hahn, S.; Mergenthaler, S.; Zimmermann, B.; Holzgreve, W., Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry 2005, 67 (2), 151-154.
    8. Ersöz, A.; Denizli, A.; Özcan, A.; Say, R., Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosensors and Bioelectronics 2005, 20 (11), 2197-2202.
    9. Yaghoubi, M.; Rahimi, F.; Negahdari, B.; Rezayan, A. H.; Shafiekhani, A., A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Scientific Reports 2020, 10 (1), 16017.
    10. Chambers, J. P.; Arulanandam, B. P.; Matta, L. L.; Weis, A.; Valdes, J. J., Biosensor recognition elements. Current issues in molecular biology 2008, 10 (1-2), 1-12.
    11. Gutiérrez, J. C.; Amaro, F.; Martín-González, A., Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Frontiers in microbiology 2015, 6, 127140.
    12. Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17 (7), 1623.
    13. He, M.-Y.; Lin, Y.-J.; Kao, Y.-L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y.-S.; Chou, H.-H. D., Sensitive and specific cadmium biosensor developed by reconfiguring metal transport and leveraging natural gene repositories. ACS sensors 2021, 6 (3), 995-1002.
    14. Bereza-Malcolm, L. T.; Mann, G. l.; Franks, A. E., Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS synthetic biology 2015, 4 (5), 535-546.
    15. Ghataora, J. S.; Gebhard, S.; Reeksting, B. J., Chimeric MerR-family regulators and logic elements for the design of metal sensitive genetic circuits in Bacillus subtilis. ACS Synthetic Biology 2023, 12 (3), 735-749.
    16. Chen, S.-Y.; Wei, W.; Yin, B.-C.; Tong, Y.; Lu, J.; Ye, B.-C., Development of a highly sensitive whole-cell biosensor for arsenite detection through engineered promoter modifications. ACS synthetic biology 2019, 8 (10), 2295-2302.
    17. Tsai, S.-T.; Cheng, W.-J.; Zhang, Q.-X.; Yeh, Y.-C., Gold-specific biosensor for monitoring wastewater using genetically engineered Cupriavidus metallidurans CH34. ACS Synthetic Biology 2021, 10 (12), 3576-3582.
    18. Roy, R.; Ray, S.; Chowdhury, A.; Anand, R., Tunable multiplexed whole-cell biosensors as environmental diagnostics for ppb-level detection of aromatic pollutants. ACS sensors 2021, 6 (5), 1933-1939.
    19. Ray, S.; Panjikar, S.; Anand, R., Design of protein-based biosensors for selective detection of benzene groups of pollutants. ACS sensors 2018, 3 (9), 1632-1638.
    20. Sahil, M.; Singh, J.; Sahu, S.; Pal, S. K.; Yadav, A.; Anand, R.; Mondal, J., Identifying Selectivity Filters in Protein Biosensor for Ligand Screening. JACS Au 2023, 3 (10), 2800-2812.
    21. Feng, S.; Sekine, S.; Pessino, V.; Li, H.; Leonetti, M. D.; Huang, B., Improved split fluorescent proteins for endogenous protein labeling. Nature communications 2017, 8 (1), 370.
    22. Cabantous, S.; Terwilliger, T. C.; Waldo, G. S., Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature biotechnology 2005, 23 (1), 102-107.
    23. Ghosh, I.; Hamilton, A. D.; Regan, L., Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. Journal of the American Chemical Society 2000, 122 (23), 5658-5659.
    24. Hu, C.-D.; Kerppola, T. K., Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature biotechnology 2003, 21 (5), 539-545.
    25. Horstman, A.; Nougalli Tonaco, I. A.; Boutilier, K.; Immink, R. G., A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. International journal of molecular sciences 2014, 15 (6), 9628-9643.
    26. Barger, N.; Oren, I.; Li, X.; Habib, M.; Daniel, R., A whole-cell bacterial biosensor for blood markers detection in urine. ACS Synthetic Biology 2021, 10 (5), 1132-1142.
    27. Danilov, V.; Zavilgelsky, G.; Zarubina, A.; Mazhul, M., The role of luxCDE genes in bioluminescence of bacteria. Moscow University Biological Sciences Bulletin 2008, 63, 57-61.
    28. Jones, J. A.; Vernacchio, V. R.; Lachance, D. M.; Lebovich, M.; Fu, L.; Shirke, A. N.; Schultz, V. L.; Cress, B.; Linhardt, R. J.; Koffas, M. A., ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Scientific reports 2015, 5 (1), 11301.
    29. Wu, Y.; Wang, C.-W.; Wang, D.; Wei, N., A whole-cell biosensor for point-of-care detection of waterborne bacterial pathogens. ACS synthetic biology 2021, 10 (2), 333-344.
    30. Li, M.; Lv, S.; Yang, R.; Chu, X.; Wang, X.; Wang, Z.; Peng, L.; Yang, J., Development of lycopene-based whole-cell biosensors for the visual detection of trace explosives and heavy metals. Analytica Chimica Acta 2023, 1283, 341934.
    31. Hui, C.-y.; Guo, Y.; Li, L.-m.; Liu, L.; Chen, Y.-t.; Yi, J.; Zhang, N.-x., Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Applied Microbiology and Biotechnology 2021, 105, 6087-6102.
    32. Hui, C.-y.; Guo, Y.; Liu, L.; Zhang, N.-x.; Gao, C.-x.; Yang, X.-q.; Yi, J., Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC advances 2020, 10 (47), 28106-28113.
    33. Guo, Y.; Hui, C.-y.; Zhang, N.-x.; Liu, L.; Li, H.; Zheng, H.-j., Development of cadmium multiple-signal biosensing and bioadsorption systems based on artificial cad operons. Frontiers in Bioengineering and Biotechnology 2021, 9, 585617.
    34. Guo, M.; Chen, X.; Chen, S.; Su, H.; Liu, H.; Xie, G.; Sun, B., Replacing manual operation with bio-automation: A high-throughput evolution strategy to construct an integrated whole-cell biosensor for the simultaneous detection of methylmercury and mercury ions without manual sample digestion. Journal of Hazardous Materials 2024, 465, 133492.
    35. Dhyani, R.; Shankar, K.; Bhatt, A.; Jain, S.; Hussain, A.; Navani, N. K., Homogentisic acid-based whole-cell biosensor for detection of alkaptonuria disease. Analytical Chemistry 2021, 93 (10), 4521-4527.
    36. Belkin, S.; Yagur-Kroll, S.; Kabessa, Y.; Korouma, V.; Septon, T.; Anati, Y.; Zohar-Perez, C.; Rabinovitz, Z.; Nussinovitch, A.; Agranat, A. J., Remote detection of buried landmines using a bacterial sensor. Nature biotechnology 2017, 35 (4), 308-310.
    37. Bernhoft, R. A., Mercury toxicity and treatment: a review of the literature. Journal of environmental and public health 2012, 2012.
    38. Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H., Low dose mercury toxicity and human health. Environmental toxicology and pharmacology 2005, 20 (2), 351-360.
    39. Eto, K., Minamata disease. Neuropathology 2000, 20, 14-19.
    40. Bakir, F.; Damluji, S. F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N.; Tikriti, S.; Dhahir, H.; Clarkson, T.; Smith, J., Methylmercury Poisoning in Iraq: An interuniversity report. Science 1973, 181 (4096), 230-241.
    41. Al-Sulaiti, M. M.; Soubra, L.; Al-Ghouti, M. A., The causes and effects of mercury and methylmercury contamination in the marine environment: A review. Current Pollution Reports 2022, 8 (3), 249-272.
    42. Perelonia, K. B. S.; Benitez, K. C. D.; Banicod, R. J. S.; Tadifa, G. C.; Cambia, F. D.; Montojo, U. M., Validation of an analytical method for the determination of cadmium, lead and mercury in fish and fishery resources by graphite furnace and Cold Vapor Atomic Absorption Spectrometry. Food Control 2021, 130, 108363.
    43. Spanu, D.; Butti, L.; Boldrocchi, G.; Bettinetti, R.; Recchia, S.; Monticelli, D., Selective organomercury determination by ICP-MS made easy. Analytica Chimica Acta 2022, 1206, 339553.
    44. Winter, M.; Lessmann, F.; Harth, V., A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry. Analytical Methods 2023, 15 (16), 2030-2038.
    45. Moraskie, M.; Roshid, M. H. O.; O'Connor, G.; Dikici, E.; Zingg, J.-M.; Deo, S.; Daunert, S., Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosensors and Bioelectronics 2021, 191, 113359.
    46. Stocker, J.; Balluch, D.; Gsell, M.; Harms, H.; Feliciano, J.; Daunert, S.; Malik, K. A.; van der Meer, J. R., Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environmental Science and Technology 2003, 37 (20), 4743-4750.
    47. Struss, A.; Pasini, P.; Ensor, C. M.; Raut, N.; Daunert, S., Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules. Analytical chemistry 2010, 82 (11), 4457-4463.
    48. Weaver, A. A.; Halweg, S.; Joyce, M.; Lieberman, M.; Goodson, H. V., Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Analytical and bioanalytical chemistry 2015, 407, 615-619.
    49. Gao, G.; Fang, D.; Yu, Y.; Wu, L.; Wang, Y.; Zhi, J., A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 2017, 167, 208-216.
    50. He, N.; Wei, Q.; Li, Y.; Hu, S.; Xian, Y.; Yang, M.; Wu, P.; Lu, Z.; Zhang, G., A sensitive, portable, and smartphone-based whole-cell biosensor device for salicylic acid monitoring. Biosensors and Bioelectronics 2024, 257, 116329.
    51. Chen, P.; Wang, S.; Inci, F.; Güven, S.; Tasoglu, S.; Demirci, U., Cell-encapsulating hydrogels for biosensing. In GELS HANDBOOK: Fundamentals, Properties and Applications Volume 3: Application of Hydrogels in Drug Delivery and Biosensing, World Scientific: 2016; pp 327-356.
    52. Wathudura, P. D.; Peiris, C.; Navarathna, C. M.; Mlsna, T. E.; Kaumal, M.; Vithanage, M.; Gunatilake, S. R., Microwave and open vessel digestion methods for biochar. Chemosphere 2020, 239, 124788.
    53. Lee, J.; Park, Y.-S.; Lee, H.-J.; Koo, Y. E., Microwave-assisted digestion method using diluted nitric acid and hydrogen peroxide for the determination of major and minor elements in milk samples by ICP-OES and ICP-MS. Food chemistry 2022, 373, 131483.
    54. Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A. C.; Gunnlaugsson, T.; James, T. D.; Yoon, J.; Akkaya, E. U., Molecular logic gates: the past, present and future. Chemical Society Reviews 2018, 47 (7), 2228-2248.
    55. Guo, T.; Wu, C.; Offenhäusser, A.; Mayer, D., A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations. physica status solidi 2020, 217 (13), 1900924.
    56. Katz, E.; Poghossian, A.; Schöning, M. J., Enzyme-based logic gates and circuits—Analytical applications and interfacing with electronics. Analytical and bioanalytical chemistry 2017, 409, 81-94.
    57. Zhang, C.; Liu, H.; Li, X.; Xu, F.; Li, Z., Modularized synthetic biology enabled intelligent biosensors. Trends in Biotechnology 2023.
    58. Hutcheson, S. W.; Bretz, J.; Sussan, T.; Jin, S.; Pak, K., Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. Journal of Bacteriology 2001, 183 (19), 5589-5598.
    59. Wang, B.; Buck, M., Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules. Chemical communications 2014, 50 (79), 11642-11644.
    60. Kamiyama, D.; Sekine, S.; Barsi-Rhyne, B.; Hu, J.; Chen, B.; Gilbert, L. A.; Ishikawa, H.; Leonetti, M. D.; Marshall, W. F.; Weissman, J. S., Versatile protein tagging in cells with split fluorescent protein. Nature communications 2016, 7 (1), 11046.
    61. Zakeri, B.; Fierer, J. O.; Celik, E.; Chittock, E. C.; Schwarz-Linek, U.; Moy, V. T.; Howarth, M., Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences 2012, 109 (12), E690-E697.
    62. Schoene, C.; Bennett, S. P.; Howarth, M., SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Scientific reports 2016, 6 (1), 21151.
    63. Gao, X.; Fang, J.; Xue, B.; Fu, L.; Li, H., Engineering protein hydrogels using SpyCatcher-SpyTag chemistry. Biomacromolecules 2016, 17 (9), 2812-2819.
    64. Wang, R.; Yang, Z.; Luo, J.; Hsing, I.-M.; Sun, F., B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proceedings of the National Academy of Sciences 2017, 114 (23), 5912-5917.
    65. Hatlem, D.; Trunk, T.; Linke, D.; Leo, J. C., Catching a SPY: using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins. International journal of molecular sciences 2019, 20 (9), 2129.
    66. Mills, K. V.; Johnson, M. A.; Perler, F. B., Protein splicing: how inteins escape from precursor proteins. Journal of Biological Chemistry 2014, 289 (21), 14498-14505.
    67. Nanda, A.; Nasker, S. S.; Mehra, A.; Panda, S.; Nayak, S., Inteins in science: Evolution to application. Microorganisms 2020, 8 (12), 2004.
    68. Saleh, L.; Perler, F. B., Protein splicing in cis and in trans. The Chemical Record 2006, 6 (4), 183-193.
    69. Schaerli, Y.; Gili, M.; Isalan, M., A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic acids research 2014, 42 (19), 12322-12328.
    70. Pinto, F.; Thornton, E. L.; Wang, B., An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nature Communications 2020, 11 (1), 1529.
    71. López-Igual, R.; Dorado-Morales, P.; Mazel, D., Increasing the Scalability of Toxin–Intein Orthogonal Combinations. ACS Synthetic Biology 2023, 12 (2), 618-623.
    72. Osborn, A. M.; Bruce, K. D.; Strike, P.; Ritchie, D. A., Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS microbiology reviews 1997, 19 (4), 239-262.
    73. Barkay, T.; Miller, S. M.; Summers, A. O., Bacterial mercury resistance from atoms to ecosystems. FEMS microbiology reviews 2003, 27 (2-3), 355-384.
    74. Outten, F. W.; Outten, C. E.; Hale, J.; O'Halloran, T. V., Transcriptional activation of an Escherichia coliCopper efflux regulon by the chromosomal MerR homologue, CueR. Journal of Biological Chemistry 2000, 275 (40), 31024-31029.
    75. Stoyanov, J. V.; Hobman, J. L.; Brown, N. L., CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular microbiology 2001, 39 (2), 502-512.
    76. Brocklehurst, K. R.; Hobman, J. L.; Lawley, B.; Blank, L.; Marshall, S. J.; Brown, N. L.; Morby, A. P., ZntR is a Zn (II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli. Molecular microbiology 1999, 31 (3), 893-902.
    77. Pruteanu, M.; Neher, S. B.; Baker, T. A., Ligand-controlled proteolysis of the Escherichia coli transcriptional regulator ZntR. Journal of bacteriology 2007, 189 (8), 3017-3025.
    78. Ahmed, M.; Lyass, L.; Markham, P. N.; Taylor, S. S.; Vazquez-Laslop, N.; Neyfakh, A. A., Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. Journal of bacteriology 1995, 177 (14), 3904-3910.
    79. Moyle, H.; Waldburger, C.; Susskind, M. M., Hierarchies of base pair preferences in the P22 ant promoter. Journal of bacteriology 1991, 173 (6), 1944-1950.
    80. Harley, C. B.; Reynolds, R. P., Analysis of E. coli pormoter sequences. Nucleic acids research 1987, 15 (5), 2343-2361.
    81. Chang, C.-C.; Lin, L.-Y.; Zou, X.-W.; Huang, C.-C.; Chan, N.-L., Structural basis of the mercury (II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic acids research 2015, 43 (15), 7612-7623.
    82. Wang, D.; Huang, S.; Liu, P.; Liu, X.; He, Y.; Chen, W.; Hu, Q.; Wei, T.; Gan, J.; Ma, J., Structural analysis of the Hg (II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Scientific Reports 2016, 6 (1), 33391.
    83. Chien, M.-F.; Narita, M.; Lin, K.-H.; Matsui, K.; Huang, C.-C.; Endo, G., Organomercurials removal by heterogeneous merB genes harboring bacterial strains. Journal of bioscience and bioengineering 2010, 110 (1), 94-98.
    84. Rantala, A.; Utriainen, M.; Kaushik, N.; Virta, M.; Välimaa, A.-L.; Karp, M., Luminescent bacteria-based sensing method for methylmercury specific determination. Analytical and bioanalytical chemistry 2011, 400, 1041-1049.
    85. Zhu, K.; Chen, D.; Cai, Y.; Zhang, T.; Ma, J.; Bao, L.; Zhao, F.; Wu, L.; Chen, S., Engineering the Ultrasensitive Visual Whole-Cell Biosensors by Evolved MerR and 5′ UTR for Detection of Ultratrace Mercury. Environmental Science and Technology 2023, 57 (44), 16964-16973.
    86. Lin, P.-H.; Tsai, S.-T.; Chang, Y.-C.; Chou, Y.-J.; Yeh, Y.-C., Harnessing split fluorescent proteins in modular protein logic for advanced whole-cell detection. Analytica Chimica Acta 2023, 1275, 341593.

    無法下載圖示 本全文未授權公開
    QR CODE