簡易檢索 / 詳目顯示

研究生: 林敏華
論文名稱: 次單層鈷在矽(111)7×7重構表面上隨溫度變化之研究
Effect of submonolayer Co on Si(111)7×7 surfaces at different temperature
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 矽(111)掃描穿隧顯微儀矽(111)7×7鈷矽化合物
英文關鍵詞: Si(111), STM, Si(111) 7×7, Co, Co silicide
論文種類: 學術論文
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗的進行是在一片清潔過的矽(111)樣品表面鍍上鈷,在經過不同溫度的加熱處理後,去觀測樣品的LEED及STM圖像,在400℃以下的觀測呈現的LEED仍為清楚的7×7重構,而STM的圖像也可看出7×7重構基底受到吸附的鈷原子影響;在600℃以上的加熱處理後,LEED圖像出現了不同的亮點,而在STM的圖像中,基底出現分佈均勻的黑色區域,隨著溫度的增加,這些黑色區域會逐漸地擴大,進而破壞了基底原有的台階結構,而出現在黑色區域邊緣外的平坦處,部分仍呈現7×7的重構,在7×7的重構區域外則出現了一些較大的原子團堆積,這些原子團的堆積看似有規則性,在LEED以及STM的圖像分析後,發現每一個原子團可能都是單位晶胞。
    由於鈷在矽基底上會產生合金反應,隨溫度的變化其反應機制也有不同,其反應形成的鈷矽化合物隨溫度增加,對基底表面的結構瓦解越嚴重,在600℃時,會有被置換出的矽原子島產生;700℃之後隨溫度的增加矽原子島的總量已無太大差異,原子島的數量則隨溫度增加而減少;在900℃時,矽(111)7×7重構表面又再度出現;再度衝至高溫後,基底仍會恢復清潔平坦的表面。

    The Co absorbed Si(111) 7×7 surface treated at different temperature by LEED (Low Energy Electron Diffraction) and STM (Scanning Tunneling Microscopy) was studied. We observed that the bias of 7×7 reconstruction was affected by adsorbed Co atoms in STM images. After heating treatment over 600°C, some different bright points were observed in LEED images. Besides, we were found some uniformly distributed black zones in STM images. As the increasing of temperature, the black zones increase and destroy the original step structures of Si basis. Some 7×7 reconstruction is observable in the smooth regions outside of the black zones. We also observed some regularly distributed atomic clusters outside of 7×7 reconstruction. Analyzed by STM and LEED, every atomic cluster might be a unit cell.
    The Co silicide increases as the raising of temperatures and the reconstruction of basis surface was no more viewed clearly. At 600℃, displaced Si islands appear. Above 700℃, no obvious difference of Si islands area can be observed as temperature changes. However, the number of atomic islands decreases as temperature increases. At 900℃, Si(111)7×7 reconstruction appears again. After treatment at high temperature, the basis returns to be smooth.

    第一章 緒論.................................................1 第二章 實驗原理及儀器裝置...................................3 2.1 實驗原理...............................................3 2.1.1 STM成像原理............................................3 2.1.2 電子穿隧效應...........................................4 2.1.3 Si(111)7×7 DAS model...................................9 2.2 儀器裝置..............................................11 2.2.1 真空系統..............................................11 (1). 真空幫浦..............................................13 (2). 真空計................................................20 2.2.2 加熱清潔系統..........................................22 2.2.3 蒸鍍系統..............................................25 2.2.4 STM本體...............................................26 2.2.5 LEED..................................................29 2.2.6 探針..................................................30 第三章 實驗步驟............................................32 3.1 真空環境..............................................32 3.1.1 主腔體之真空備置......................................32 3.1.2 更換樣品之真空備置....................................38 3.2 樣品準備..............................................41 3.3 樣品清潔與重構........................................41 3.4 STM成像...............................................45 3.5 鈷燈絲的清潔與蒸鍍控制................................46 3.6 加熱處理蒸鍍鈷的樣品及觀測其STM圖像變化...............47 第四章 結果與討論..........................................48 4.1 Si(111)基底...........................................48 4.2 室溫下,不同鈷鍍量的矽表面............................52 4.3 低溫加熱處理後的矽表面................................57 4.4 高溫加熱處理後的矽表面................................60 4.5 經衝高溫1250℃後的矽表面..............................72 4.6 討論..................................................73 第五章 結論.................................................84 參考文獻.....................................................86

    [1] J.S. Tsay, Y.D. Yao, Y. Liou, Surf. Sci. 454 (2000) 856.
    [2] A.E. Dolbak, B.Z. Olshanetsky, S.A. Teys, Surf. Sci. 373 (1997) 43.
    [3] B.Ilge, G. Palasantzas, J. de Nijs, L.J. Geerligs, Surf. Sci. 414 (1998)
    [4] C. Julian Chen, “Introduction to STM”, IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York (1993)
    [5] “表面分析儀器”, 行政國家科學委員會精密儀器發展中心
    [6] 呂登復,“實用真空技術”, 新竹黎明出書局。
    [7]“真空技術與應用”, 行政院國家科學委員會精密儀器發展中心
    [8] 陳淑貞, 國立台灣師範大學碩士論文:鈷薄膜在矽(100)表面的
    磁性觀測 (2000)
    [9] J.C. Vickerman, Surface Analysis, “Surfac Analysis research Centre”, Department of Chemistry UMIST, Manchester, UK (1997)
    [10]林毓瓊, 國立台灣師範大學碩士論文:掃描穿隧顯微儀電壓脈
    衝誘發CO解離研究 (2002)
    [11]I.S. Hwang, M.S. Ho, T.T. Tsong, Surf. Sci. 514 (2002) 309.
    [12]M.S. Ho, I.S. Hwang, T.T. Tsong, Phys. Rev. Lett. 84 (2000) 5792. 279.
    [13] U. Köhler, J.E. Ddemuth, R.J. Hamers, J. Vac. Sci. Technol. A 7 (1989) 2860.
    [14]H. Tochihara, W. Shimada, Surf. Sci. 296 (1993) 186.
    [15]W. Shimada, H. Tochihara, Surf. Sci. 311 (1994) 107.
    [16]T. Hasegawa, M. Kohno, S. Hosaka, S. Hosaka, S. Hosoki, Phys. Rev. B 48 (1993) 1943.
    [17]Y.N. Yang, E.D. Williams, Phys. Rev. B 51 (1995) 13238.
    [18]B. Boigtländer, T. Weber, Phys. Rev. Lett. 77 (1996) 3861.
    [19]B. Boigtländer, M. Kästner, P. Šmilauer, Phys. Rev.Lett. 81 (1998) 858.
    [20]C. Pirri, J.C. Peruchetti, G. Gewinner, Phy. Rev. B 29 (1984) 3391.

    QR CODE