簡易檢索 / 詳目顯示

研究生: 陳昱傑
Chen, Yu-Jiie
論文名稱: 具多巴胺與五胜肽DFNKF修飾的中孔洞氧化矽奈米粒子對人類降鈣素聚集之影響
Effects of dopamine and pentapeptide DFNKF conjugated mesoporous silica nanoparticles on human calcitonin aggregation
指導教授: 杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 人類降鈣素類澱粉蛋白纖維中孔洞氧化矽奈米粒子鄰苯二酚五胜肽
英文關鍵詞: Human calcitonin, Amyloid fibrils, Mesoporous silica nanoparticles, Catechol, Pentapeptide
DOI URL: http://doi.org/10.6345/NTNU202100160
論文種類: 學術論文
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝誌 ii 目錄 iii 摘要 v Abstract vi 圖目錄 vii 表目錄 ix 中英文對照 x 第一章 緒論 1 1.1 類澱粉蛋白聚集與疾病的關聯性 1 1.2 類澱粉蛋白纖維可能的結構與聚集機制探討 2 1.3 人類降鈣素(Human calcitonin, hCT) 5 1.4 誘發人類降鈣素聚集的關鍵序列(DFNKF)介紹 7 1.5 中孔洞氧化矽奈米粒子(Mesoporous silica nanoparticle, MSN) 13 1.6 利用中孔洞氧化矽奈米粒子影響類澱粉蛋白聚集之文獻探討 16 1.7 具鄰羥基苯環結構的小分子作為類澱粉蛋白抑制劑的研究探討 20 1.8 研究動機與目的 24 第二章 實驗材料與流程 26 2.1 實驗材料與儀器 26 2.2 實驗原理與方法 27 2.2.1 中孔洞氧化矽奈米粒子合成與修飾 27 2.2.2 動態光散射法(Dynamic light scattering, DLS) 30 2.2.3 電氣泳動光散射法(Electrophoresis light scattering, ELS) 33 2.2.4 傅立葉轉換紅外線光譜法(Fourier-transform infrared spectroscopy, FTIR) 36 2.2.5 紫外光-可見光及螢光光譜 38 2.2.6 人類降鈣素及五胜肽(DFNKF)之合成 38 2.2.7 人類降鈣素及五胜肽(DFNKF)之純化與鑑定 42 2.2.8 實驗前胜肽樣品的前處理及配置 44 2.2.9 硫磺素-T動力學測定( Thioflavin-T kinetic assay) 45 2.2.10穿透式電子顯微鏡(transmission electron microscopy, TEM) 46 第三章 結果與討論 48 3.1 胜肽鑑定 48 3.2中孔洞氧化矽奈米粒子特性鑑定 52 3.3中孔洞氧化矽奈米粒子的表面電性差異對人類降鈣素聚集的影響 56 3.4 修飾鄰苯二酚之奈米粒子(MSN-DOPA)對人類降鈣素聚集的影響 58 3.5 五胜肽(DFNKF)對人類降鈣素聚集的影響 59 3.6 表面嫁接五胜肽的奈米粒子(MSN-DFNKF)對人類降鈣素聚集的影響 60 第四章 結論 62 參考資料 63

    [1]Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
    [2]Chiti, F.; Dobson, C. M., Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annual review of biochemistry 2017, 86, 27-68.
    [3]Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S. i.; Merlini, G.; Saraiva, M.J.; Westermark, P., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis.Amyloid 2012, 19 (4), 167-170.
    [4]Benson, M. D.; Buxbaum, J. N.; Eisenberg, D. S.; Merlini, G.; Saraiva, M. J.; Sekijima, Y.; Sipe, J. D.; Westermark, P., Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2018, 25 (4), 215-219.
    [5]Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular medicine 2003, 4 (1), 21-35.
    [6]Lott, I. T.; Head, E., Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiology of aging 2005, 26 (3), 383-389.
    [7]Martin, L.; Latypova, X.; Terro, F., Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochemistry international 2011, 58 (4), 458-471.
    [8]Wormald, J.; Luck, J.; Athwal, B.; Muelhberger, T.; Mosahebi, A., Surgical intervention for chronic migraine headache: a systematic review. JPRAS open 2019, 20, 1-18.
    [9]Engel, M. F.; Khemtémourian, L.; Kleijer, C. C.; Meeldijk, H. J.; Jacobs, J.; Verkleij, A. J.; de Kruijff, B.; Killian, J. A.; Höppener, J. W., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proceedings of the National Academy of Sciences 2008, 105 (16), 6033-6038.
    [10]Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nature reviews Molecular cell biology 2010, 11 (11), 777-788.
    [11]Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure–activity relationship of amyloid fibrils. FEBS letters 2009, 583 (16), 2610-2617.
    [12]Murata, K.; Wolf, M., Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta (BBA)-General Subjects 2018, 1862 (2),
    324-334.
    [13]Luca, S.; Yau, W.-M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-13522.
    [14]Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proceedings of the National Academy of Sciences 2004, 101 (46), 16180-16185.
    [15]Moran, S. D.; Zanni, M. T., How to get insight into amyloid structure and formation from infrared spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (11), 1984-1993.
    [16]Vadukul, D. M.; Al-Hilaly, Y. K.; Serpell, L. C., Methods for structural analysis of amyloid fibrils in misfolding diseases. In Protein Misfolding Diseases, Springer: 2019; pp 109 122.
    [17]Xue, W.-F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation- dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proceedings of the National Academy of Sciences 2008, 105 (26), 8926-8931.
    [18]Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. International Journal of Molecular Sciences 2012, 13 (3), 3038-3072.
    [19]Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2010, 1804 (7), 1405-1412.
    [20]Levine III, H., Thioflavine T interaction with synthetic Alzheimer's disease β‐ amyloid peptides: Detection of amyloid aggregation in solution. Protein Science 1993, 2 (3), 404-410.
    [21]Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803.
    [22]Copp, D. H.; Cameron, E.; Cheney, B. A.; Davidson, A. G. F.; Henze, K., Evidence for calcitonin—a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962, 70 (5), 638-649.
    [23]Sexton, P. M.; Adam, W. R.; Moseley, J. M.; Martin, T. J.; Mendelsohn, F. A., Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney international 1987, 32 (6), 862-868.
    [24]Stenbeck, G. In Formation and function of the ruffled border in osteoclasts, Seminars in cell & developmental biology, Academic Press: 2002; pp 285-292.
    [25]Suda, T.; Takahashi, N.; Martin, T. J., Modulation of osteoclast differentiation. Endocrine reviews 1992, 13 (1), 66-80.
    [26]Nicholson, G.; Moseley, J.; Sexton, P.; Mendelsohn, F.; Martin, T., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. The Journal of clinical investigation 1986, 78 (2), 355-360.
    [27]Swaminathan, R.; Ker, J.; Care, A., Calcitonin and intestinal calcium absorption. Journal of Endocrinology 1974, 61 (1), 83-94.
    [28]Khosla, S.; Riggs, B. L., Pathophysiology of age-related bone loss and osteoporosis. Endocrinology and Metabolism Clinics 2005, 34 (4), 1015-1030.
    [29]Chatziavramidis, A.; Mantsopoulos, K.; Gennadiou, D.; Sidiras, T., Intranasal complications in women with osteoporosis under treatment with nasal calcitonin spray: Case reports and review of the literature. Auris Nasus Larynx 2008, 35 (3), 417-422.
    [30]Siris, E. S., Paget's disease of bone. Journal of bone and Mineral Research 1998, 13 (7), 1061-1065.
    [31]Minisola, S.; Pepe, J.; Piemonte, S.; Cipriani, C., The diagnosis and management of hypercalcaemia. Bmj 2015, 350.
    [32]Arvinte, T.; Cudd, A.; Drake, A., The structure and mechanism of formation of human calcitonin fibrils. Journal of Biological Chemistry 1993, 268 (9), 6415-6422.
    [33]Balbach, J. J.; Ishii, Y.; Antzutkin, O. N.; Leapman, R. D.; Rizzo, N. W.; Dyda,F.; Reed, J.; Tycko, R., Amyloid fibril formation by Aβ16-22, a seven-residuefragment of the Alzheimer's β-amyloid peptide, and structural characterization bysolid state NMR. Biochemistry 2000, 39 (45), 13748-13759.
    [34]Tenidis, K.; Waldner, M.; Bernhagen, J.; Fischle, W.; Bergmann, M.; Weber, M.; Merkle, M.-L.; Voelter, W.; Brunner, H.; Kapurniotu, A., Identification of a penta-and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. Journal of molecular biology 2000, 295 (4), 1055-1071.
    [35]atarek-Nossol, M.; Yan, L.-M.; Schmauder, A.; Tenidis, K.; Westermark, G.; Kapurniotu, A., Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid-core-containing hexapeptide. Chemistry & biology 2005, 12 (7), 797-809.
    [36]Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. Journal of Biological Chemistry 2002, 277 (38), 35475 35480.
    [37]Shtainfeld, A.; Sheynis, T.; Jelinek, R., Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry 2010, 49 (25), 5299-5307.
    [38]Tsai, H.-H. G.; Reches, M.; Tsai, C.-J.; Gunasekaran, K.; Gazit, E.; Nussinov, R., Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proceedings of the National Academy of Sciences 2005, 102 (23), 8174-8179.
    [39]Itoh-Watanabe, H.; Kamihira-Ishijima, M.; Javkhlantugs, N.; Inoue, R.; Itoh, Y.; Endo, H.; Tuzi, S.; Saitô, H.; Ueda, K.; Naito, A., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Physical Chemistry Chemical Physics 2013, 15 (23), 8890-8901.
    [40]Baeza, A.; Colilla, M.; Vallet-Regí, M., Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert opinion on drug delivery 2015, 12 (2), 319-337.
    [41]Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710 712.
    [42]Ciesla, U.; Schüth, F., Ordered mesoporous materials. Microporous and Mesoporous materials 1999, 27 (2-3), 131-149.
    [43]Singh, R. K.; Patel, K. D.; Leong, K. W.; Kim, H.-W., Progress in nanotheranostics based on mesoporous silica nanomaterial platforms. ACS applied materials & interfaces 2017, 9 (12), 10309-10337.
    [44]Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin,V. S.-Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release ofneurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
    [45]Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials 2012, 24 (12), 1504-1534.
    [46]He, Q.; Shi, J., Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry 2011, 21 (16), 5845-5855.
    [47]Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S.-Y., Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical communications 2007, (31), 3236-3245.
    [48]Lee, S. B.; Kim, H. L.; Jeong, H. J.; Lim, S. T.; Sohn, M. H.; Kim, D. W., Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angewandte Chemie 2013, 125 (40), 10743-10746.
    [49]Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
    [50]Evans, D. F.; Wennerström, H., The colloidal domain: where physics, chemistry, biology, and technology meet. 1999.
    [51]Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
    [52]Taebnia, N.; Morshedi, D.; Doostkam, M.; Yaghmaei, S.; Aliakbari, F.; Singh,G.; Arpanaei, A., The effect of mesoporous silica nanoparticle surface chemistryand concentration on the α-synuclein fibrillation. Rsc Advances 2015, 5 (75),60966-60974.
    [53]Akbarian, M.; Tayebi, L.; Mohammadi-Samani, S.; Farjadian, F., Mechanistic assessment of functionalized mesoporous silica-mediated insulin fibrillation. The Journal of Physical Chemistry B 2020, 124 (9), 1637-1652.
    [54]Kapurniotu, A.; Schmauder, A.; Tenidis, K., Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. Journal of molecular biology 2002, 315 (3), 339-350.
    [55]Hughes, E.; Burke, R. M.; Doig, A. J., Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. Journal of Biological Chemistry 2000, 275 (33), 25109-25115.
    [56]Zhu, X.; Wen, Y.; Zhao, Y.; Liu, Y.; Sun, J.; Liu, J.; Liu, J.; Chen, L., Functionalized chitosan-modified defect-related luminescent mesoporous silica nanoparticles as new inhibitors for hIAPP aggregation. Nanotechnology 2019, 30 (31), 315705.
    [57]Wang, S. S.-S.; Good, T. A.; Rymer, D. L., The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. The international journal of biochemistry & cell biology 2005, 37 (8), 1656-1669.
    [58]Sacchettini, J. C.; Kelly, J. W., Therapeutic strategies for human amyloid diseases. Nature Reviews Drug Discovery 2002, 1 (4), 267-275.
    [59]Pithadia, A. S.; Bhunia, A.; Sribalan, R.; Padmini, V.; Fierke, C. A.; Ramamoorthy, A., Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chemical Communications 2016, 52 (5), 942-945.
    [60]Pithadia, A.; Brender, J. R.; Fierke, C. A.; Ramamoorthy, A., Inhibition of IAPP aggregation and toxicity by natural products and derivatives. Journal of diabetes research 2016, 2016.
    [61]Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F. A., Targeting amyloid aggregation: an overview of strategies and mechanisms. International journal of molecular sciences 2018, 19 (9), 2677.
    [62]Porat, Y.; Abramowitz, A.; Gazit, E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chemical biology & drug design 2006, 67 (1), 27-37.
    [63]Huang, R.; Vivekanandan, S.; Brender, J. R.; Abe, Y.; Naito, A.; Ramamoorthy,A., NMR characterization of monomeric and oligomeric conformations ofhuman calcitonin and its interaction with EGCG. Journal of molecular biology2012, 416 (1), 108-120.
    [64]Guo, C.; Ma, L.; Zhao, Y.; Peng, A.; Cheng, B.; Zhou, Q.; Zheng, L.; Huang, K., Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Scientific reports 2015, 5 (1), 1-11.
    [65]Lantz, R.; Busbee, B.; Wojcikiewicz, E. P.; Du, D., Flavonoids with Vicinal Hydroxyl Groups Inhibit Human Calcitonin Amyloid Formation. Chemistry–A European Journal 2020, 26 (57), 13063-13071.
    [66]Palhano, F. L.; Lee, J.; Grimster, N. P.; Kelly, J. W., Toward the molecular mechanism (s) by which EGCG treatment remodels mature amyloid fibrils. Journal of the American Chemical Society 2013, 135 (20), 7503-7510.
    [67]Popovych, N.; Brender, J. R.; Soong, R.; Vivekanandan, S.; Hartman, K.; Basrur, V.; Macdonald, P. M.; Ramamoorthy, A., Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP (248–286). The Journal of Physical Chemistry B 2012, 116 (11), 3650-3658.
    [68]Bolton, J. L.; Dunlap, T., Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chemical research in toxicology 2017, 30 (1), 13-37.
    [69]Cudd, A.; Arvinte, T.; Das, R. E. G.; Chinni, C.; MacIntyre, I., Enhanced potency of human calcitonin when fibrillation is avoided. Journal of pharmaceutical sciences 1995, 84 (6), 717-719.
    [70]Yamamoto, Y., Calcitonin-induced anorexia in rats: a structure-activity study byintraventricular injections. The Japanese Journal of Pharmacology 1982, 32 (6),1013-1017.
    [71]Avidan-Shpalter, C.; Gazit, E., The early stages of amyloid formation: biophysical and structural characterization of human calcitonin pre-fibrillar assemblies. Amyloid 2006, 13 (4), 216-225.
    [72]Levy, F.; Muff, R.; Dotti-Sigrist, S.; Dambacher, M.; Fischer, J., Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of Paget's disease. The Journal of Clinical Endocrinology & Metabolism 1988, 67 (3), 541-545.
    [73]Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. Journal of the American Chemical Society 2012, 134 (13), 5722-5725.
    [74]Zhang, J.; Niemelä, M.; Westermarck, J.; Rosenholm, J. M., Mesoporous silica nanoparticles with redox-responsive surface linkers for charge-reversible loading and release of short oligonucleotides. Dalton Transactions 2014, 43 (10), 4115-4126.
    [75]Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M., Lectin- conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta biomaterialia 2018, 65, 393-404.
    [76]Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
    [77]Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Organic letters 2015, 17 (9), 2202-2205.
    [78]Zeta-potential & Particle size Analyzer ELSZ-2000 https://www.otsukael.jp/product/detail/productid/92/category1id/37/category2id/29/category3id/46
    [79]https://www.protpi.ch/Calculator/ProteinTool#Results

    無法下載圖示 本全文未授權公開
    QR CODE