研究生: |
陳昱傑 Chen, Yu-Jiie |
---|---|
論文名稱: |
具多巴胺與五胜肽DFNKF修飾的中孔洞氧化矽奈米粒子對人類降鈣素聚集之影響 Effects of dopamine and pentapeptide DFNKF conjugated mesoporous silica nanoparticles on human calcitonin aggregation |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 人類降鈣素 、類澱粉蛋白纖維 、中孔洞氧化矽奈米粒子 、鄰苯二酚 、五胜肽 |
英文關鍵詞: | Human calcitonin, Amyloid fibrils, Mesoporous silica nanoparticles, Catechol, Pentapeptide |
DOI URL: | http://doi.org/10.6345/NTNU202100160 |
論文種類: | 學術論文 |
相關次數: | 點閱:290 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
[2]Chiti, F.; Dobson, C. M., Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annual review of biochemistry 2017, 86, 27-68.
[3]Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S. i.; Merlini, G.; Saraiva, M.J.; Westermark, P., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis.Amyloid 2012, 19 (4), 167-170.
[4]Benson, M. D.; Buxbaum, J. N.; Eisenberg, D. S.; Merlini, G.; Saraiva, M. J.; Sekijima, Y.; Sipe, J. D.; Westermark, P., Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2018, 25 (4), 215-219.
[5]Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular medicine 2003, 4 (1), 21-35.
[6]Lott, I. T.; Head, E., Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiology of aging 2005, 26 (3), 383-389.
[7]Martin, L.; Latypova, X.; Terro, F., Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochemistry international 2011, 58 (4), 458-471.
[8]Wormald, J.; Luck, J.; Athwal, B.; Muelhberger, T.; Mosahebi, A., Surgical intervention for chronic migraine headache: a systematic review. JPRAS open 2019, 20, 1-18.
[9]Engel, M. F.; Khemtémourian, L.; Kleijer, C. C.; Meeldijk, H. J.; Jacobs, J.; Verkleij, A. J.; de Kruijff, B.; Killian, J. A.; Höppener, J. W., Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proceedings of the National Academy of Sciences 2008, 105 (16), 6033-6038.
[10]Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nature reviews Molecular cell biology 2010, 11 (11), 777-788.
[11]Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure–activity relationship of amyloid fibrils. FEBS letters 2009, 583 (16), 2610-2617.
[12]Murata, K.; Wolf, M., Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta (BBA)-General Subjects 2018, 1862 (2),
324-334.
[13]Luca, S.; Yau, W.-M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-13522.
[14]Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proceedings of the National Academy of Sciences 2004, 101 (46), 16180-16185.
[15]Moran, S. D.; Zanni, M. T., How to get insight into amyloid structure and formation from infrared spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (11), 1984-1993.
[16]Vadukul, D. M.; Al-Hilaly, Y. K.; Serpell, L. C., Methods for structural analysis of amyloid fibrils in misfolding diseases. In Protein Misfolding Diseases, Springer: 2019; pp 109 122.
[17]Xue, W.-F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation- dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proceedings of the National Academy of Sciences 2008, 105 (26), 8926-8931.
[18]Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. International Journal of Molecular Sciences 2012, 13 (3), 3038-3072.
[19]Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2010, 1804 (7), 1405-1412.
[20]Levine III, H., Thioflavine T interaction with synthetic Alzheimer's disease β‐ amyloid peptides: Detection of amyloid aggregation in solution. Protein Science 1993, 2 (3), 404-410.
[21]Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803.
[22]Copp, D. H.; Cameron, E.; Cheney, B. A.; Davidson, A. G. F.; Henze, K., Evidence for calcitonin—a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962, 70 (5), 638-649.
[23]Sexton, P. M.; Adam, W. R.; Moseley, J. M.; Martin, T. J.; Mendelsohn, F. A., Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney international 1987, 32 (6), 862-868.
[24]Stenbeck, G. In Formation and function of the ruffled border in osteoclasts, Seminars in cell & developmental biology, Academic Press: 2002; pp 285-292.
[25]Suda, T.; Takahashi, N.; Martin, T. J., Modulation of osteoclast differentiation. Endocrine reviews 1992, 13 (1), 66-80.
[26]Nicholson, G.; Moseley, J.; Sexton, P.; Mendelsohn, F.; Martin, T., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. The Journal of clinical investigation 1986, 78 (2), 355-360.
[27]Swaminathan, R.; Ker, J.; Care, A., Calcitonin and intestinal calcium absorption. Journal of Endocrinology 1974, 61 (1), 83-94.
[28]Khosla, S.; Riggs, B. L., Pathophysiology of age-related bone loss and osteoporosis. Endocrinology and Metabolism Clinics 2005, 34 (4), 1015-1030.
[29]Chatziavramidis, A.; Mantsopoulos, K.; Gennadiou, D.; Sidiras, T., Intranasal complications in women with osteoporosis under treatment with nasal calcitonin spray: Case reports and review of the literature. Auris Nasus Larynx 2008, 35 (3), 417-422.
[30]Siris, E. S., Paget's disease of bone. Journal of bone and Mineral Research 1998, 13 (7), 1061-1065.
[31]Minisola, S.; Pepe, J.; Piemonte, S.; Cipriani, C., The diagnosis and management of hypercalcaemia. Bmj 2015, 350.
[32]Arvinte, T.; Cudd, A.; Drake, A., The structure and mechanism of formation of human calcitonin fibrils. Journal of Biological Chemistry 1993, 268 (9), 6415-6422.
[33]Balbach, J. J.; Ishii, Y.; Antzutkin, O. N.; Leapman, R. D.; Rizzo, N. W.; Dyda,F.; Reed, J.; Tycko, R., Amyloid fibril formation by Aβ16-22, a seven-residuefragment of the Alzheimer's β-amyloid peptide, and structural characterization bysolid state NMR. Biochemistry 2000, 39 (45), 13748-13759.
[34]Tenidis, K.; Waldner, M.; Bernhagen, J.; Fischle, W.; Bergmann, M.; Weber, M.; Merkle, M.-L.; Voelter, W.; Brunner, H.; Kapurniotu, A., Identification of a penta-and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. Journal of molecular biology 2000, 295 (4), 1055-1071.
[35]atarek-Nossol, M.; Yan, L.-M.; Schmauder, A.; Tenidis, K.; Westermark, G.; Kapurniotu, A., Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid-core-containing hexapeptide. Chemistry & biology 2005, 12 (7), 797-809.
[36]Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. Journal of Biological Chemistry 2002, 277 (38), 35475 35480.
[37]Shtainfeld, A.; Sheynis, T.; Jelinek, R., Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry 2010, 49 (25), 5299-5307.
[38]Tsai, H.-H. G.; Reches, M.; Tsai, C.-J.; Gunasekaran, K.; Gazit, E.; Nussinov, R., Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proceedings of the National Academy of Sciences 2005, 102 (23), 8174-8179.
[39]Itoh-Watanabe, H.; Kamihira-Ishijima, M.; Javkhlantugs, N.; Inoue, R.; Itoh, Y.; Endo, H.; Tuzi, S.; Saitô, H.; Ueda, K.; Naito, A., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Physical Chemistry Chemical Physics 2013, 15 (23), 8890-8901.
[40]Baeza, A.; Colilla, M.; Vallet-Regí, M., Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert opinion on drug delivery 2015, 12 (2), 319-337.
[41]Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710 712.
[42]Ciesla, U.; Schüth, F., Ordered mesoporous materials. Microporous and Mesoporous materials 1999, 27 (2-3), 131-149.
[43]Singh, R. K.; Patel, K. D.; Leong, K. W.; Kim, H.-W., Progress in nanotheranostics based on mesoporous silica nanomaterial platforms. ACS applied materials & interfaces 2017, 9 (12), 10309-10337.
[44]Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin,V. S.-Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release ofneurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
[45]Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials 2012, 24 (12), 1504-1534.
[46]He, Q.; Shi, J., Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry 2011, 21 (16), 5845-5855.
[47]Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S.-Y., Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical communications 2007, (31), 3236-3245.
[48]Lee, S. B.; Kim, H. L.; Jeong, H. J.; Lim, S. T.; Sohn, M. H.; Kim, D. W., Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angewandte Chemie 2013, 125 (40), 10743-10746.
[49]Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
[50]Evans, D. F.; Wennerström, H., The colloidal domain: where physics, chemistry, biology, and technology meet. 1999.
[51]Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
[52]Taebnia, N.; Morshedi, D.; Doostkam, M.; Yaghmaei, S.; Aliakbari, F.; Singh,G.; Arpanaei, A., The effect of mesoporous silica nanoparticle surface chemistryand concentration on the α-synuclein fibrillation. Rsc Advances 2015, 5 (75),60966-60974.
[53]Akbarian, M.; Tayebi, L.; Mohammadi-Samani, S.; Farjadian, F., Mechanistic assessment of functionalized mesoporous silica-mediated insulin fibrillation. The Journal of Physical Chemistry B 2020, 124 (9), 1637-1652.
[54]Kapurniotu, A.; Schmauder, A.; Tenidis, K., Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. Journal of molecular biology 2002, 315 (3), 339-350.
[55]Hughes, E.; Burke, R. M.; Doig, A. J., Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. Journal of Biological Chemistry 2000, 275 (33), 25109-25115.
[56]Zhu, X.; Wen, Y.; Zhao, Y.; Liu, Y.; Sun, J.; Liu, J.; Liu, J.; Chen, L., Functionalized chitosan-modified defect-related luminescent mesoporous silica nanoparticles as new inhibitors for hIAPP aggregation. Nanotechnology 2019, 30 (31), 315705.
[57]Wang, S. S.-S.; Good, T. A.; Rymer, D. L., The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. The international journal of biochemistry & cell biology 2005, 37 (8), 1656-1669.
[58]Sacchettini, J. C.; Kelly, J. W., Therapeutic strategies for human amyloid diseases. Nature Reviews Drug Discovery 2002, 1 (4), 267-275.
[59]Pithadia, A. S.; Bhunia, A.; Sribalan, R.; Padmini, V.; Fierke, C. A.; Ramamoorthy, A., Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chemical Communications 2016, 52 (5), 942-945.
[60]Pithadia, A.; Brender, J. R.; Fierke, C. A.; Ramamoorthy, A., Inhibition of IAPP aggregation and toxicity by natural products and derivatives. Journal of diabetes research 2016, 2016.
[61]Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F. A., Targeting amyloid aggregation: an overview of strategies and mechanisms. International journal of molecular sciences 2018, 19 (9), 2677.
[62]Porat, Y.; Abramowitz, A.; Gazit, E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chemical biology & drug design 2006, 67 (1), 27-37.
[63]Huang, R.; Vivekanandan, S.; Brender, J. R.; Abe, Y.; Naito, A.; Ramamoorthy,A., NMR characterization of monomeric and oligomeric conformations ofhuman calcitonin and its interaction with EGCG. Journal of molecular biology2012, 416 (1), 108-120.
[64]Guo, C.; Ma, L.; Zhao, Y.; Peng, A.; Cheng, B.; Zhou, Q.; Zheng, L.; Huang, K., Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Scientific reports 2015, 5 (1), 1-11.
[65]Lantz, R.; Busbee, B.; Wojcikiewicz, E. P.; Du, D., Flavonoids with Vicinal Hydroxyl Groups Inhibit Human Calcitonin Amyloid Formation. Chemistry–A European Journal 2020, 26 (57), 13063-13071.
[66]Palhano, F. L.; Lee, J.; Grimster, N. P.; Kelly, J. W., Toward the molecular mechanism (s) by which EGCG treatment remodels mature amyloid fibrils. Journal of the American Chemical Society 2013, 135 (20), 7503-7510.
[67]Popovych, N.; Brender, J. R.; Soong, R.; Vivekanandan, S.; Hartman, K.; Basrur, V.; Macdonald, P. M.; Ramamoorthy, A., Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP (248–286). The Journal of Physical Chemistry B 2012, 116 (11), 3650-3658.
[68]Bolton, J. L.; Dunlap, T., Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chemical research in toxicology 2017, 30 (1), 13-37.
[69]Cudd, A.; Arvinte, T.; Das, R. E. G.; Chinni, C.; MacIntyre, I., Enhanced potency of human calcitonin when fibrillation is avoided. Journal of pharmaceutical sciences 1995, 84 (6), 717-719.
[70]Yamamoto, Y., Calcitonin-induced anorexia in rats: a structure-activity study byintraventricular injections. The Japanese Journal of Pharmacology 1982, 32 (6),1013-1017.
[71]Avidan-Shpalter, C.; Gazit, E., The early stages of amyloid formation: biophysical and structural characterization of human calcitonin pre-fibrillar assemblies. Amyloid 2006, 13 (4), 216-225.
[72]Levy, F.; Muff, R.; Dotti-Sigrist, S.; Dambacher, M.; Fischer, J., Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of Paget's disease. The Journal of Clinical Endocrinology & Metabolism 1988, 67 (3), 541-545.
[73]Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. Journal of the American Chemical Society 2012, 134 (13), 5722-5725.
[74]Zhang, J.; Niemelä, M.; Westermarck, J.; Rosenholm, J. M., Mesoporous silica nanoparticles with redox-responsive surface linkers for charge-reversible loading and release of short oligonucleotides. Dalton Transactions 2014, 43 (10), 4115-4126.
[75]Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M., Lectin- conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta biomaterialia 2018, 65, 393-404.
[76]Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
[77]Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Organic letters 2015, 17 (9), 2202-2205.
[78]Zeta-potential & Particle size Analyzer ELSZ-2000 https://www.otsukael.jp/product/detail/productid/92/category1id/37/category2id/29/category3id/46
[79]https://www.protpi.ch/Calculator/ProteinTool#Results