簡易檢索 / 詳目顯示

研究生: 林均威
Lin, Jun-Wei
論文名稱: 阿拉伯芥與馬拉巴栗葉肉細胞的葉綠素酶亞細胞定位
Subcellular localization of chlorophyllase in the mesophyll cells of Arabidopsis thaliana and Pachira aquatica
指導教授: 孫智雯
Sun, Chih-Wen
楊棋明
Yang, Chi-Ming
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 阿拉伯芥馬拉巴栗葉綠素酶免疫金定位
英文關鍵詞: Arabidopsis thaliana, Pachira aquatica, chlorophyllase, immunogold labeling
DOI URL: http://doi.org/10.6345/NTNU202001531
論文種類: 學術論文
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉綠素酶(clorophyllase, Chlase或CLH)是啟動葉綠素降解過程的主要酵素之一,能將葉綠素水解成脫植醇葉綠素(chlorophyllide)及植醇(phytol)。根據前人研究顯示,CLH位於柑橘的果皮色質體或銀杏葉和馬拉巴栗(Pachira aquatica)的葉綠體中;而在其他文獻指出,CLH不是位於葉綠體中,而在阿拉伯芥(Arabidopsis thaliana)中葉肉細胞的細胞質、液泡膜或內質網上。因此本研究將確定野生種阿拉伯芥及馬拉巴栗的CLH於不同發育時期中的表現模式。首先利用各種生物資訊資料庫分析比對馬拉巴栗葉綠素酶1(PaCLH1)與阿拉伯芥葉綠素酶(AtCLHs)的序列相似性及預測AtCLHs定位,結果顯示PaCLH1與AtCLHs有高序列相似性,而且預測CLHs是定位在細胞質和葉綠體。其次以Anti-PaCLH1抗體進行西方墨點法、免疫螢光染色和免疫金定位來分析兩物種CLH的亞細胞定位。西方墨點結果表明CLH蛋白表現量會隨著葉片的衰老程度而降低;在免疫細胞化學定位中,阿拉伯芥AtCLHs螢光訊號皆在葉綠體上;而CLH的免疫金標記定位在兩物種中的葉綠體、細胞質和液泡中,但不存在於線粒體和細胞壁上。

    Chlorophyllase (Chlase or CLH), which hydrolyzes chlorophyll to form chlorophyllide and phytol, is one of the major enzymes to initiate the process of chlorophyll degradation pathway. It has been reported that CLH is localized in the peel plastid of citrus or the leaf chloroplast of Ginkgo biloba and Pachira aquatica. However, some literatures have suggested that CLH is not localized in the chloroplast, but is in the cytosol or tonoplast or ER of Arabidopsis thaliana mesophyll cells. In this study, the expression pattern of CLHs in the wild-type Arabidopsis thaliana and Pachira aquatica in different developmental stages would be verified. Sequence similarity and prediction of subcellular localization of Pachira aquatica chlorophyllase 1 (PaCLH1) and Arabidopsis thaliana chlorophyllases (AtCLHs) were first analyzed by various bioinformatics databases. The results demonstrate that PaCLH1 and AtCLHs share high sequence similarity. Besides, CLHs are preferentially predicted to localize in cytoplasm and chloroplast. Furthermore, anti-PaCLH1antibody was used for western blotting, immunocytochemistry (ICC) staining and immunogold labelling experiments to analyze the subcellular localization of CLH of the two species. The results show that protein level of CLH decreases during leaf aging. ICC data suggest that immunefluorescent signal of AtCLHs is localized to chloroplast. However, immunogold labeling results show that AtCLHs and PaCLH appeared in chloroplast, cytosol and vacuole but not in mitochondrium and cell wall.

    中文摘要   i Abstract   ii 目錄   iii 圖目錄   v 表目錄   vi 緒論   1 研究材料與方法   3 一、研究材料   3 二、CLH的亞細胞定位預測   3 三、CLH酶重組蛋白之合成   4 四、西方墨點法   5 五、純化葉綠體   7 六、免疫細胞螢光化學定位   8 七、免疫金定位   10 八、統計方法   12 結果   14 一、CLH的亞細胞定位預測   14 二、CLH重組蛋白及抗體專一性   15 三、不同階段CLH蛋白質表現   15 四、葉綠體分離   16 五、免疫細胞螢光化學定位   16 六、免疫金定位   16 討論   18 一、葉綠素降解   18 二、CLH作用   18 三、CLH定位   20 結論   22 參考文獻   23

    Ardao, C., & Vennesland, B. 1960. Chlorophyllase activity of spinach chloroplastin. Plant Physiology. 35: 368.

    Ben-Yaakov, E., Harpaz-Saad, S., Galili, D., Eyal, Y., & Goldschmidt, E. 2006. The relationship between chlorophyllase activity and chlorophyll degradation during the course of leaf senescence in various plant species. Israel Journal of Plant Sciences. 54: 129-135.

    Böger, P. 1965. Chlorophyllase of Chlorella vulgaris beijerinck. Phytochemistry. 4: 435-443.

    Burry, R. W. 2011. Controls for immunocytochemistry: an update. Journal of Histochemistry & Cytochemistry. 59: 6-12.

    Chen, M.C.M., Chao, P. Y., Huang, M. Y., Yang, J. H., Yang, Z. W., Lin, K. H., and Yang, C. M. 2012. Chlorophyllase activity in green and non-green tissues of variegated plants. South African journal of Botany. 81: 44-49.

    Chen, L. F. O., Lin, C. H., Kelkar, S. M., Chang, Y. M., & Shaw, J. F. 2008. Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Science. 174: 25-31.

    Gutbrod, K., Romer, J., & Dörmann, P. 2019. Phytol metabolism in plants. Progress in Lipid Research. 74:1-17.

    Hao, X., Zhang, W., Liu, Y., Zhang, H., Ren, H., Chen, Y., Wang, L., Zeng, J., Yang, Y., & Wang, X. 2020. Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant. Plant Physiology and Biochemistry. 146: 392-402.

    Harpaz-Saad S., Azoulay T., Arazi T., Ben-Yaakov E., Mett A., Shiboleth Y.M., Hörtensteiner S., Gidoni D., Gal-On A., Goldschmidt E.E., and Eyal Y. 2007. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell. 19: 1007–1022

    Hörtensteiner S. 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology. 57: 55-77.

    Hu, X., Makita, S., Schelbert, S., Sano, S., Ochiai, M., Tsuchiya, T., Hasegawa S.F., Hörtensteiner S., Tanaka A., and Tanaka, R. 2015. Re-examination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant physiology. 167: 660-670.

    Kariola, T., Brader, G., Li, J., & Palva, E. T. 2005. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell. 17: 282-294.

    Kräutler B., and Matile P. 1999. Solving the Riddle of Chlorophyll Breakdown. Accounts of Chemical Research. 32: 35-43.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 35: 1547-1549.

    Lee, G. C., Chepyshko, H., Chen, H. H., Chu, C. C., Chou, Y. F., Akoh, C. C., & Shaw, J. F. 2010. Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleracea. Journal of agricultural and food chemistry. 58: 8651-8657.

    Lin, Y. P., Wu, M. C., & Charng, Y. Y. 2016. Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. The Plant Cell. 28: 2974-2990.

    Maggie Wilson. 2011. Immunostaining of Chloroplasts Isolated from Arabidopsis Leaves. Haswell Lab Protocol. https://pages.wustl.edu/
    files/pages/imce/haswell/immunostaining_protocol.pdf

    Matile, P., Schellenberg, M., and Vicentini, F. 1997. Localization of chlorophyllase in the chloroplast envelope. Planta. 201: 96-99.

    Ni, D., Xu, P., & Gallagher, S. 2016. Immunoblotting and immunodetection. Current Protocols in Molecular Biology. 114: 10-8.

    Okazawa, A., Tang, L., Itoh, Y., Fukusaki, E. I., and Kobayashi, A. 2006. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift für Naturforschung C. 61: 111-117.

    Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hörtensteiner, S. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell. 21: 767-785.

    Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E. E., Dörmann, P., and Hörtensteiner, S. 2007. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence‐related chlorophyll breakdown in Arabidopsis thaliana. FEBS Letters. 581: 5517-5525.

    Shemer, T. A., Harpaz-Saad, S., Belausov, E., Lovat, N., Krokhin, O., Spicer, V., Standing K.G., Goldschmidt E.E., and Eyal, Y. 2008. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiology. 148: 108-118.

    Stover, N. A., & Cavalcanti, A. R. 2017. Using NCBI BLAST. Current Protocols Essential Laboratory Techniques. 14: 11-1.

    Takamiya, K. I., Tsuchiya, T., and Ohta, H. 2000. Degradation pathway (s) of chlorophyll: what has gene cloning revealed?. Trends in Plant Science. 5: 426-431.

    Terpstra, W. 1981. Identification of chlorophyllase as a glycoprotein. FEBS Letters. 126: 231-235.

    Tsai, J. Y., Lee, M. J., Chang, M. D. T., & Huang, H. 2014. The effect of catalase on migration and invasion of lung cancer cells by regulating the activities of cathepsin S, L, and K. Experimental Cell Research. 323: 28-40.

    Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., and Takamiya, K. I. 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences. 96: 15362-15367.

    Vavilin, D., & Vermaas, W. 2007. Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1767: 920-929.

    Wang, S., Yin, L., Mano, J. I., & Tanaka, K. 2015. Isolation of Chloroplast Inner and Outer Envelope Membranes. Magnesium. 13446: 34-9.

    Willstätter, R., and Stoll, A. 1913. Die wirkungen der chlorophyllase. Untersuchungen Ueber hlorophyll. 172-187.

    Zepka, L. Q., Jacob-Lopes, E., & Roca, M. 2019. Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science. 26: 94-100.

    下載圖示
    QR CODE