研究生: |
陳冠杰 Chen, Kuan-Chieh |
---|---|
論文名稱: |
利用高解析度大氣模式與CMIP6高解析度氣候模式探討TC頻率與破壞性之現今模擬與未來變化 Simulation and Future Change Projection in the Frequency and Damage of Tropical Cyclones by High-Resolution AGCMs and CMIP6 HighResMIP GCMs |
指導教授: |
鄒治華
Tsou, Chih-Hua 陳正達 Chen, Cheng-Ta |
口試委員: |
鄒治華
Tsou, Chih-Hua 陳正達 Chen, Cheng-Ta 簡芳菁 Chien, Fang-Ching 許晃雄 Hsu, Huang-Hsiung 洪志誠 Hong, Chi-Cherng 余嘉裕 Yu, Jia-Yuh |
口試日期: | 2023/01/12 |
學位類別: |
博士 Doctor |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 熱帶氣旋 、季內震盪 、尺度交互作用 、全球暖化 、高解析度大氣與海氣氣候模式 |
英文關鍵詞: | tropical cyclone, intraseasonal oscillation, scale interaction, global warming, high-resolution atmospheric and coupled model |
研究方法: | 主題分析 、 比較研究 、 現象分析 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202300251 |
論文種類: | 學術論文 |
相關次數: | 點閱:206 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高解析度大氣與海氣模式,系統性評估模式模擬西北太平洋TC (Tropical Cyclone)活動之表現,及推估未來溫室氣體濃度為CMIP5(Coupled Model Intercomparison Project 5)中的RCP8.5 (Representative Concentration Pathways 8.5)與CMIP6中的SSP5-8.5 (Shared Socioeconomic Pathways 5-8.5)暖化情境下,近未來(2021-2050)與21世紀末(2075-2099)西北太平洋TC活動及登陸東亞沿岸地區之變化,並利用GPI(Genesis Potential Index)與SSE (synoptic-scale eddy)能量診斷等工具,分析TC變化機制。結果顯示25~50公里高解析度大氣與海氣模式均可以模擬現今氣候TC生成與軌跡頻率。然而,模式仍低估TC平均最大強度及強烈TC數目,其中海氣模式更低估TC強度。經由SSE能量診斷分析,顯示ISO(Intraseasonal Oscillation)與SSE尺度交互作用,在TC強度增強過程中,扮演重要的角色。海氣模式模擬ISO提供顯著較少的能量給TC發展。ISO南側較弱的水氣通量,較不利TC潛熱釋放,TC可用位能轉換成較少的TC動能,限制TC強度發展。高解析度氣候模式有助於TC活動模擬表現。
高解析度海氣(大氣)模式推估在CMIP6 SSP5-8.5 (CMIP5 RCP8.5) 暖化情境下,近未來(2021-2050) (21世紀末(2075-2099))的TC生成數目減少4.3%(50%),強度增強0.8%(14%),及伴隨降雨增加5.8%(35.4%)。TC登陸東亞沿岸地區的頻率減少4.5%(51.9%)。暖化效應影響下,高解析度海氣與大氣模式推估近未來與21世紀末西北太平洋TC活動的變化趨勢一致,但變化幅度仍具有不確定性。
經由GPI與SSE能量診斷分析,發現高解析度大氣模式推估在21世紀末TC主要生成位置上,中層大氣較乾燥,季風槽減弱伴隨中層下沉運動異常及SSE活動減弱,限制TC生成。然而,在21世紀末,較暖海溫與較弱垂直風切,及SSE動能產生效率增加,有利TC更快速的增強,更具有破壞性。
In this study, we adopted multiple high-resolution (25–50 km) atmospheric and coupled models to systematically investigate the tropical cyclone (TC) activity over the western North Pacific (WNP). We examined the TC activity for the present day and the future under Coupled Model Intercomparison Project 5 (CMIP5) Representative Concentration Pathways 8.5 scenario for the period 2075–2099, and CMIP6 Shared Socioeconomic Pathways 5–8.5 scenario during 2021–2050. The results show that both atmospheric and coupled models can capture TC genesis and track frequencies, although the models underestimated the TC intensity and intense TC frequency. The diagnosis of the synoptic-scale eddy (SSE) energetics suggests that the scale interaction between the intraseasonal oscillation (ISO) and SSE plays an important role in the development of the TC intensity during the intensification process. The coupled models underestimated kinetic energy conversion from ISO to SSE.
High-resolution coupled (atmospheric) models projected that the TC genesis frequency will decrease by 4.3% (50%), whereas the TC intensity and precipitation will increase by 0.8% (14%) and 5.8% (35.4%), respectively, during the period 2021–2050 (2075–2099) under the CMIP6 SSP5-8.5 (CMIP5 RCP8.5) scenario. The TC landfall frequency over East Asia will decrease by 4.5% (51.9%). Although the trend for projected change in TC activity in the near future in the WNP is consistent with that projected for the end of the 21st century, the magnitude of that change in TC activity remains uncertain under two different periods and scenarios for future warming.
The diagnoses of the genesis potential index and SSE energetics suggest that the future reduction in TC genesis frequency during 2075–2099 is mainly attributed to lower, mid-level relative humidity and a weakened SSE perturbation associated with a weakened monsoon trough. However, landfall TCs will be more destructive at the end of the 21st century owing to the warmer sea surface temperature, weaker vertical wind shear, and higher SSE kinetic energy generation.
Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere, 9(4), 138. https://doi.org/10.3390/atmos9040138
Balaguru, K., and Coauthors, 2016: Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat Commun 7, 13670. https://doi.org/10.1038/ncomms13670
Bender, M. A., and I. Ginis, 2000: Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity, Monthly Weather Review, 128(4), 917-946. https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2
Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73, doi: 10.1034/j.1600-0870-.1996.00004.x.
Bhatia, K., G. Vecchi, H. Murakami, S. Underwood, and J. Kossin, 2018: Projected response of tropical cyclone intensity and intensification in a global climate model. J. Climate, 31, 8281–8303. https://doi.org/10.1175/JCLID-17-0898.1
Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776
Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589–604.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15), 2996–3006. https://doi.org/10.1175/JCLI3457.1
Camargo, S. J., A.W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 3635–3653.
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902.
Camargo, S. J., M. Ting, and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic potential intensity. Climate Dyn., 40, 1515–1529.
Chaudhari, H. S., S. Pokhrel, S. K. Saha, A. Dhakate, and A. Hazra, 2015: Improved depiction of Indian summer monsoon in latest high resolution NCEP climate forecast system reanalysis. Int. J. Climatol., 35, 3102–3119.
Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152, https://doi.org/10.1007/s00703-005-0126-y
Chen, J. H. and S. J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi: 10.1029/2011GL047629.
Chen, J. M., C. H. Wu, P. H. Chung, and C. H. Sui, 2018: Influence of Intraseasonal–Interannual Oscillations on Tropical Cyclone Genesis in the Western North Pacific. Journal of Climate 31, 12, 4949-4961.
Chen, K. C., C. H. Tsou, C. C. Hong, H. H. Hsu, and C. Y. Tu, 2023: Effect of model resolution on simulation of tropical cyclone landfall in East Asia based on a comparison of 25- and 50-km HiRAMs: Role of monsoon flow–topography interaction. Climate Dynamics, 1-17. https://doi.org/10.1007/s00382-023-06668-z
Chen, T. C., S. Y. Wang, and M. C. Yen, 2006: Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific. J. Climate., 19, 5709–5720.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944, https://doi.org/10.1175/1520-0442(2002)015,2934:TIVITG.2.0.CO;2
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.
Chou, C., and Y. Hsueh, 2010: Mechanisms of Northward-Propagating Intraseasonal Oscillation—A Comparison between the Indian Ocean and the Western North Pacific. Journal of Climate 23, 24, 6624-6640. https://doi.org/10.1175/2010JCLI3596.1
Chou, S. H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products. Journal of Climate, 17(20), 3973-3989.
Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the Mechanism for Tropical Cyclone Intensification. Journal of Atmospheric Sciences, 53(23), 3528-3540. https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2
Daubechies, I., 1988: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math., 41, 909–996, doi:10.1002/cpa.3160410705.
Davis, C., and L. Bosart, 2006: The formation of Hurricane Humberto (2001): The importance of extratropical precursors. Quart. J. Roy. Meteor. Soc., 132, 2055–2085.
Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 2082–2087, https://doi.org/10.1002/2017GL076966
Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604, doi:10.1175/1520-0469(1986)043,0585:AASITF.2.0.CO;2
Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431–3456.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843–858, https://doi.org/10.1175/1520-0469(2004)061,0843:ECOTCI.2.0.CO;2
Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.
Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA–CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst., 2.doi:10.3894/JAMES.2010.2.1.
Emanuel, K. A., 2013: Downscaling CMIP5 climate models show increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219–12 224.
Fisher, E. L., 1958: Hurricane and the sea surface temperature field. J. Meteorol., 15: 328–333.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 129, 2249–2269.
Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 2889–2904.
Gao, S., S. Zhai, L. S. Chiu, and D. Xia, 2016: Satellite Air–Sea Enthalpy Flux and Intensity Change of Tropical Cyclones over the Western North Pacific. Journal of Applied Meteorology and Climatology, 55(2), 425-444. https://doi.org/10.1175/JAMC-D-15-0171.1
Garner, S., 2015: The Relationship between Hurricane Potential Intensity and CAPE, Journal of the Atmospheric Sciences, 72(1), 141-163. https://doi.org/10.1175/JAS-D-14-0008.1
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447–462. https://doi.org/10.1002/qj.49710644905
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
Gray, W. M., 1979: Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation. In: Shaw, D.B., Ed., Meteorology over the Tropical Oceans, Royal Meteorological Society, James Glaisher House, Grenville Place, Bracknell, 155-218.
Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 4185-4208, https://doi.org/10.5194/gmd-9-4185-2016.
Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30, 5243–5264, https://doi.org/10.1175/JCLI-D-16-0557.1
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys., 56, 57-79, doi: 10.1007/BF01022521.
Holland, G. J., 1997:The Maximum Potential intensity of Tropical Cyclone. J. Atmos. Sci. 54, 2519-2540.
Hong, C. C., C. H. Tsou, M. Y. Lee, C. C. Chang, H. H. Hsu, and K. C. Chen, 2018: Effect of ISO-SSE interaction on accelerating the TS to severe TS development in the WNP since the late 1990s. Geophysical Research Letters, 45, 12,008–12,014. https://doi.org/10.1029/2018GL079548
Hong, C. C., C. H. Tsou, P. C. Hsu, K. C. Chen, H. C. Liang, H. H. Hsu, C. Y. Tu, and A. Kitoh, 2021: Future Changes in Tropical Cyclone Intensity and Frequency over the Western North Pacific Based on 20-km HiRAM and MRI Models. J. Climate, 34(6), 2235-2251. https://doi.org/10.1175/JCLI-D-20-0417.1
Hsu, H. H., C. H. Hung, A. K. Lo, C. C. Wu, and C. W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Clim., 21(12): 2960-2975. https://doi.org/10.1175/2007JCLI1847.1
Hsu, P. C., T. Li, and C. H. Tsou, 2011: Interaction between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–941.
Hsu, P. C., T. H. Lee, C. H. Tsou, P. S. Chu, Y. Qian, and M. Bi, 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dyn., 49, 3175–3192, https://doi.org/10.1007/s00382-016-3504-x
Hsu, P. C., K. C. Chen, C. H. Tsou, H. H. Hsu, C. C. Hong, H. C. Liang, C. Y. Tu, and A. Kitoh, 2021: Future changes in the frequency and destructiveness of landfalling tropical cyclones over East Asia projected by high-resolution AGCMs. Earth's Future, 9, e2020EF001888. https://doi.org/10.1029/2020EF001888
IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.
IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis, Masson-Delmotte, V., et al., Eds., Cambridge University Press, In Press.
Kang, I. S., et al., 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated in 10 GCMs. Clim. Dyn., 19: 383–395. https://doi.org/10.1007/s00382-002-0245-9
Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779
Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Climate, 28(18), 7203-7224. https://doi.org/10.1175/JCLI-D-15-0129.1
Knutson, T. R., S. J. Camargo, J. C. Chan, K. Emanuel, C. H. Ho, J. Kossin, and L. Wu, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303-E322.
Ko, K. C., and H. H. Hsu, 2009: ISO modulation on the sub-monthly wave pattern and the recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582–599.
Ko, K. C., H. H. Hsu, and C. Chou, 2012: Propagation and Maintenance Mechanism of the TC/Submonthly Wave Pattern and TC Feedback in the Western North Pacific. J. Climate, 25(24), 8591-8610. https://doi.org/10.1175/JCLI-D-11-00643.1
Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of Various Surface Latent Heat Flux Fields. Journal of Climate, 16(4), 670-678. https://doi.org/10.1175/1520-0442(2003)016<0670:IOVSLH>2.0.CO;2
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Weather Rev., 123:2791–2801. https://doi.org/10.1175/15200493(1995)123%3c2791:IITGHP%3e2.0.CO;2
Lau, N., and J. J. Ploshay, 2009: Simulation of Synoptic- and Subsynoptic-Scale Phenomena Associated with the East Asian Summer Monsoon Using a High-Resolution GCM. Monthly Weather Review, 137(1), 137-160. https://doi.org/10.1175/2008MWR2511.1
Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.
Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Comm., 6. doi: 10.1038/ncomms7591
Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918, https://doi.org/10.1175/JCLI-D-12-00210.1
Li, R. C. Y., W. Zhou, C. M. Shun, and T. C. Lee, 2017: Change in destructiveness of landfalling tropical cyclones over China in recent decades. Journal of Climate, 30, 3367–3379. https://doi.org/10.1175/JCLI-D-16-0258.1
Li, Z., W. Yu, T. Li, V. Murty, and F. Tangang, 2013: Bimodal character of cyclone climatology in the bay of Bengal modulated by monsoon seasonal cycle. Journal of Climate, 26, 1033–1046. https://doi.org/10.1175/JCLI-D-11-00627.1
Liu, Z., Ostrenga, D., Teng, W., and Kempler, S., 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 1317–1325.
Lu, R., and Z. Lin, 2009: Role of Subtropical Precipitation Anomalies in Maintaining the Summertime Meridional Teleconnection over the Western North Pacific and East Asia, J. Climate, 22(8), 2058-2072. https://doi.org/10.1175/2008JCLI2444.1
Maloney, E. D., and D. L. Hartmann, 2001: The Madden Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2845-2558.
Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 2153–2168.
Manabe, S., J. L. Holloway Jr., and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580–613, https://doi.org/10.1175/1520-0469(1970)027,0580:TCIATI.2.0.CO;2
Mandal, M., U. C. Mohanty, P. Sinha, et al., 2007: Impact of sea surface temperature in modulating movement and intensity of tropical cyclones. Nat Hazards, 41, 413–427. https://doi.org/10.1007/s11069-006-9051-8
Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weatherresolving climate modeling. J. Climate, 25, 3867–3893, https://doi.org/10.1175/JCLI-D-11-00346.1
Manganello, J. V., and Coauthors, 2016: Seasonal Forecasts of Tropical Cyclone Activity in a High-Atmospheric-Resolution Coupled Prediction System. Journal of Climate, 29(3), 1179-1200. https://doi.org/10.1175/JCLI-D-15-0531.1
Mei, W., and S. P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9, 753–757. https://doi.org/10.1038/ngeo2792
Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, M. Hosaka, M. Sugi, S. Yukimoto, S. Kusunoki, and A. Kitoh, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteorol Soc. Jpn., 90A:233–258. doi:10.2151/jmsj.2012-A12
Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699-2721, doi: 10.1175/2010JCLI3338.1.
Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73-76. doi: 10.2151/sola.2010-019.
Murakami, H., B. Wang, and A. Kitoh, 2011: Future change in western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 1154–1169.
Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 3237–3260.
Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 2133–2141. doi:10.1002/2014GL059519
O'Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of Environmental Vertical Wind Shear on the Intensity of Hurricane-Strength Tropical Cyclones in the Australian Region, Monthly Weather Review, 133(12), 3644-3660. https://doi.org/10.1175/MWR3041.1
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Vol. 108, No. D14, 4407. https://doi.org/10.1029/2002JD002670
Rayner, N. A., Kennedy, J. J., Smith, R. O., and Titchner, H. A., 2016: The Met Office Hadley Centre Sea Ice and Sea Surface Temperature data set, version 2, part 3: the combined analysis, in preparation.
Roberts, M. J., J. Camp, J. Seddon, P. L. Vidale, K. Hodges, B. Vannière, et al., 2020a: Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble, Journal of Climate, 33(7), 2557-2583. https://doi.org/10.1175/JCLI-D-19-0639.1
Roberts, M. J., J. Camp, J. Seddon, P. L. Vidale, K. Hodges, B. Vannière, et al., 2020b: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophysical Research Letters, 47, e2020GL088662. https://doi.org/10.1029/2020GL088662
Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteorol. Soc., 91, 1015-1057, doi: 10.1175/2010BAMS3001.1.
Scoccimarro, E., P. G. Fogli, K. Reed, S. Gualdi, S. Masina, and A. Navarra, 2017: Tropical cyclone interaction with the ocean: The role of high-frequency (subdaily) coupled processes. J. Climate, 30, 145–162, https://doi.org/10.1175/JCLI-D-16-0292.1
Shen, L. Z., C. C. Wu, and F. Judt, 2021: The Role of Surface Heat Fluxes on the Size of Typhoon Megi (2016). Journal of the Atmospheric Sciences, 78(4), 1075-1093. https://doi.org/10.1175/JAS-D-20-0141.1
Simpson, R. H., and H. Riehl, 1981: The Hurricane and Its Impact, Louisiana State University Press, Baton Rouge, 398 pp.
Sun, X., and R. Wu, 2022: Contribution of Wind Speed and Sea-Air Humidity Difference to the Latent Heat Flux-SST Relationship. Ocean-Land-Atmosphere Research. 2022. 1-17. https://doi.org/10.34133/2022/9815103
Tam, C. Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Weather Rev., 134, 1630-1646, doi: 10.1175/MWR3147.1.
Tory, K. J., S. S. Chand, J. L. McBride, H. Ye, and R. A. Dare, 2013: Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Climate, 26, 9946–9959, https://doi.org/10.1175/JCLI-D-13-00010.1
Tsou, C. H., H. H. Hsu, and P. C. Hsu, 2014: The role of multi-scale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn. Journal of Climate, 27(10), 3750–3766. https://doi.org/10.1175/JCLI-D-13-00380.1
Tsou, C. H., P. Y. Huang, C. Y. Tu, C. T. Chen, T. P. Tzeng, and C. T. Cheng, 2016: Present simulation and future projection of typhoon activity over western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model. TAO, Vol. 27, No. 5, 687-703.
Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017
Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, https://doi.org/10.1029/2006GL028905
Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745–760.
Wang, B., and Chan, J. C. L., 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15(13), 1643–1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16, 1195–1211.
Wang, B. and H. Murakami, 2020: Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett., 15, 114008.
Wang, C., and L. Wu, 2018: Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient and implications for tropical cyclone activity. Earth's Future, 6, 919–936. https://doi.org/10.1029/2018EF000858
Wang, J., W. Wang, X. Fu, and K. H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Clim. Dyn., 38, 2191–2207, doi: 10.1007/s00382-011-1087-0.
Wang, S., S. J. Camargo, A. H. Sobel, and L. M. Polvani, 2014: Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a Mesoscale Model, Journal of the Atmospheric Sciences, 71(11), 4333-4348. https://doi.org/10.1175/JAS-D-14-0029.1
Weng, C. H., and H. H. Hsu, 2017: Intraseasonal oscillation enhancing C5 typhoon occurrence over the tropical western North Pacific. Geophys. Res. Lett., 44, 3339–3345, https://doi.org/10.1002/2017GL072743
Wolff, D. B., W. A. Petersen, A. Tokay, D. A. Marks, and J. L. Pippitt, 2019: Assessing Dual-Polarization Radar Estimates of Extreme Rainfall during Hurricane Harvey. Journal of Atmospheric and Oceanic Technology 36, 12, 2501-2520. https://doi.org/10.1175/JTECH-D-19-0081.1
Wu, C. H., and H. H. Hsu, 2016: Role of the Indochina Peninsula narrow mountains in modulating the East Asian–western North Pacific summer monsoon. Journal of Climate, 29(12), 4445-4459.
Wu, C. H., W. R. Huang, and S. Y. S. Wang, 2018b: Role of Indochina Peninsula topography in precipitation seasonality over East Asia. Atmosphere, 9(7), 255.
Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686–1698. doi: 10.1175/1520 0442(2004)017<1686:AIOGWO>2.0.CO;2
Wu, L., B. Wang, and S. Geng, 2005: Growing influence of typhoon on East Asia. Geophys. Res. Lett., 32:L18703. https://doi.org/10.1029/2005gl022937
Wu, L., and B. Wang, 2008: What has changed the proposition of intense hurricanes in the last 30 years? Journal of Climate, 21, 1432–1439.
Wu, L., and H. Zhao, 2012: Dynamically derived tropical cyclone intensity changes over the western North Pacific. Journal of Climate, 25, 89–98.
Wu, L., R. Wang, and X. Feng, 2018a: Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth's Future, 6, 1518–1527. https://doi.org/10.1029/2018EF000973
Wu, R., and B. P. Kirtman, 2004: Impacts of the Indian Ocean on the Indian Summer Monsoon–ENSO Relationship. Journal of Climate, 17(15), 3037-3054. https://doi.org/10.1175/1520-0442(2004)017<3037:IOTIOO>2.0.CO;2
Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A. T. Noda, M. Nakano, and T. Nasuno, 2017: Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model. J. Climate, 30(23), 9703-9724. https://doi.org/10.1175/JCLI-D-17-0068.1
Yokoi, S., and Y. N. Takayabu, 2013: Attribution of decadal variability in tropical cyclone passage frequency over the western North Pacific: A new approach emphasizing the genesis location of cyclones. Journal of Climate, 26, 973–987.
Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii, 2017: Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys. Res. Lett., 44, 9910–9917, https://doi.org/10.1002/2017GL075058
Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29, 8589–8610. https://doi.org/10.1175/JCLI-D-16-0273.1
Zeng, Z., Y. Wang, and C. C. Wu, 2007: Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study. Monthly Weather Review 135, 1, 38-59. https://doi.org/10.1175/MWR3278.1
Zhang, F., and K. Emanuel, 2016: On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification, Journal of the Atmospheric Sciences, 73(5), 2011-2019. https://doi.org/10.1175/JAS-D-16-0011.1
Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653-6678, doi: 10.1175/2009JCLI3049.1.
Zhou, H., P. C. Hsu, and Y. Qian, 2018: Close linkage between quasi-biweekly oscillation and tropical cyclone intensification over the western North Pacific. Atmos. Sci. Lett., 19, e826. https://doi.org/10.1002/asl.826