簡易檢索 / 詳目顯示

研究生: 柯兆謙
論文名稱: 具有雙面微結構之高準直光學膜片設計
Design of a highly collimating optical film with microstructures on both sides
指導教授: 鄧敦建
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 增亮膜自對位方法
英文關鍵詞: BEF, self-alignment method
論文種類: 學術論文
相關次數: 點閱:238下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究為製作高準直、高輝度的側入式背光模組增亮膜設計。此設計可應用於平板電腦、筆記型電腦、數位相機…等具中小型尺寸液晶螢幕的產品。
      設計基礎來自具逆稜鏡陣列的增亮膜片,模擬結果顯示在相同光源下,設計膜片之正面峰值強度約為逆稜鏡膜片的兩倍,而能量使用率約98%。
      設計之雙面微結構增亮膜可以自對位方式製造,且與模擬結果比較可發現強度峰值皆位於膜片法線方向,水平出光張角的半高全寬也同約為16度,可見其模擬結果可靠性。

    This thesis is the design of a highly collimating optical film with microstructures on both sides in edge-type backlight module. The design can be used in tablet PCs, notebook computers, digital cameras ... etc. with small and medium-size LCD screen products.
    The concept is based on the inverse prism array brightness enhancement film, simulation results show that under the same light source, the peak intensity of the designed film is about twice the peak intensity of inverse prism film, and the energy utilization rate is about 98%.
    The designed highly collimating optical film can be manufactured by the self-alignment method, and the peak of the emitted light intensity can be found in the normal direction with the FWHM about 16 degrees. The Simulation results are similar to the measurement results, showing the reliability.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 背光模組簡介 1 1.3 背光模組元件介紹 3 1.4 研究動機與目的 5 1.5 論文架構 6 第二章 基本理論 7 2.1 幾何光學簡介 7 2.2 介質表面的特性 8 2.2.1 透射(Transmission) 8 2.2.2 吸收(Absorption) 8 2.2.3 擴散反射(Diffuse reflection) 8 2.3 光度學簡介 10 (Illuminance/Irradiance) 10 2.3.1 光通量(Luminous Flux) 11 2.3.2 照度(Illuminance) 11 2.3.3 強度(Luminous Intensity) 11 2.3.4 輝度(Luminance) 12 2.3.5 朗伯光源 12 2.4 LightTools 軟體介紹 13 2.4.1 接收器座標定義 13 2.4.2 最佳化程式 16 2.5 增亮膜介紹 17 第三章 增亮膜微結構設計 23 3.1 初步構想 23 3.2 模擬模型設計 26 3.2.1 光源 26 3.2.2 反射片 27 3.2.3 逆稜鏡片模擬結果 27 3.3 微結構幾何參數介紹 28 3.4 控制角錐結構參數 30 3.4.1 控制底寬 30 3.4.2 控制底角 32 3.4.3 控制高度 33 3.5 設計角錐結構 35 3.5.1 改善V方向偏折 35 3.5.2 結構尺寸與基材厚度之影響 35 3.5.3 ERA 高度縮放 39 3.6 優化柱狀透鏡結構 43 3.6.1 利用LightTools製作非球面柱狀聚焦透鏡 44 3.6.2 設計ERA搭配聚焦透鏡 45 3.6.3 配合膜厚調變 46 3.7 非對稱角錐結構 48 第四章 自對位方法製作增亮膜 51 4.1製作流程 51 4.2 選擇膜仁與基材 54 4.3 曝光條件與微結構幾何參數之關聯 55 4.4 模擬與量測結果 60 4.5 成果檢討 63 第五章 結論與未來展望 64 參考文獻 65

    [1] National Science Council Website http://web1.nsc.gov.tw.
    [2] 3M Company Website http://www.3m.com.
    [3] Seung Ryong Park, Oh Jang Kwon, Dongho Shin, Seok-Ho Song,     Hong-Seok Lee and Hwan Young Choi, “Grating micro-dot patterned light guide plates for LED backlights,” OPTICS EXPRESS Vol. 15, No. 6, pp. 2888-2899, March 2007.
    [4] Adrian Travis, Tim Large, Neil Emerton, and Steven Bathiche,     “Collimated light from a waveguide for a display backlight,” OPTICS EXPRESS Vol. 17, No. 22, pp. 19714-19719, October 2009.
    [5] S. I. Ochiai, “Light guide plate and light guide plate assembly utilizing diffraction grating,” US Patent 5703667, 1997.
    [6] Frank L Pedrotti, Leno M Pedrotti, ans Leno S Pedrotti, Introduction to Optics (3rd Edition), April 2006.
    [7] CYBERNET SYSTEMS TAIWAN Co. Website, cybernet-ap.com.tw.
    [8] Lorne A. Whitehead, “ Lighting panel with opposed 45,” US Patent 4542449, 1985.
    [9] K. Käläntär, “ Modified functional light-guide plate for backlighting transmissive LCDs,” Journal of the SID 11/4, pp. 641-645, 2003.
    [10] B. A. Jacobson, R. Winston, and P. L. Gleckman, “Flat-panel fluorescentlamp backlights with reduced illumination angle: Backlighting optics at the thermodynamic limit,” SID Intl Symp Digest Tech Papers, pp. 423–426, 1992.
    [11] D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, “Novel integrated light-guide plates for liquid crystal display backlight,” J. Opt. A: Pure Appl. Opt. 7, pp. 111-117 ,2005.
    [12] Jui-Wen Pan, Chen-Wei Fan, “ High luminance hybrid light guide plate for
    backlight module application ,” OPTICS EXPRESS Vol. 19, No. 21, pp. 20079-20087, October 2011.

    [13] W. Zhang, H. Wang, L. Ji, and C. Liu, “Design and Simulation of the LGP Structure for LED Backlight,” Proc. SPIE 7655, 765537 ,2010.
    [14] J. Gourlay and I. Miller, “High Efficiency Hybrid Backlight for Large-area LCD TV, Digest of Technical Paper,” J. Soc. Inf. Disp. 74, pp. 1097–1099 2010.
    [15] J. C. Miñano, P. Benítez, J. Chaves, M. Hernández, O. Dross, and A. Santamaría, “High-efficiency LED backlight optics designed with the flow-line method,” Proc. SPIE 5942 pp. 594202-594212,2005.
    [16] D. Feng, G. Jin, Y. Yan, and S. Fan, “High quality light guide plates that can control the illumination angle based on microprism structures,” Appl. Phys. Lett. 85, pp. 6016–6018 2004.
    [17] W. J. Cassarly, “Backlight pattern optimization,” Proc. SPIE 6834, pp. 683407-683412 ,2007.

    下載圖示
    QR CODE