研究生: |
林柏成 Lin, Po-Chen |
---|---|
論文名稱: |
一、利用電子激發態分子探測釕金屬修飾蛋白質內的長距離電子傳遞及檢測十二烷基硫酸鈉的濃度
二、七種台灣精油的化學組成及對大腸桿菌的抗菌效果 (I)Probing long range electron transfer in ruthenium modified proteins and evaluating the SDS concentration by using electronically excited molecules (II) Essential oils from Taiwan: chemical composition and antibacterial activity against Escherichia coli |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 168 |
中文關鍵詞: | 閃光淬熄法 、細胞色素c 、雙分子淬熄反應 、籠蔽效應 、溴化乙錠 、十二烷基硫酸鈉 、臨界微胞濃度 、檢測 、抗菌性 、化學組成 、大腸桿菌 、精油 、氣相層析質譜儀 |
英文關鍵詞: | flash-quench, cytochrome c, bimolecular quenching reaction, cage effect, ethidium bromide, sodium dodecyl sulfate, critical micelle concentration, assay, antibacterial activity, chemical composition, Escherichia coli, essential oil, gas chromatography−mass spectrometry |
DOI URL: | https://doi.org/10.6345/NTNU202204676 |
論文種類: | 學術論文 |
相關次數: | 點閱:287 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成出釕金屬聯吡啶錯合物([Ru((CH3)2bpy)2(im)2]2+與[Ru((COO−)2bpy)2(im)2]2−),並將其修飾在細胞色素c (cyt c)上,再藉由閃光淬熄法來探測蛋白質內的電子傳遞。修飾上推電子取代基的[Ru((CH3)2bpy)2(im)2]2+與Ru(NH3)63+反應後,得到25.1%的激發態淬熄率和42.0%的三價釕金屬([RuIII( )2(im)2]3+)生成率;修飾上拉電子取代基的[Ru((COO−)2bpy)2(im)2]2−則有65.2%激發態淬熄率和19.6%的三價釕金屬生成率。同樣將釕金屬修飾蛋白質與Ru(NH3)63+反應,發現Ru((CH3)2bpy)2(im)(His33)-Fe2+-cyt c的分子內電子傳遞之量子產率是17.6%,而Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c的分子內電子傳遞之量子產率則是11.9%。儘管反應驅動力預測Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c有較大的量子產率,但還要考慮另外兩個變數的影響(籠蔽效應跟化學反應)。
利用Ru(bpy)2dppz2+的光開關性質來檢測十二烷基硫酸鈉的濃度,隨著十二烷基硫酸鈉的濃度增加,Ru(bpy)2dppz2+的磷光強度也增加。然而,當十二烷基硫酸鈉的濃度小於0.1%時,Ru(bpy)2dppz2+會沉澱析出,因此換用溴化乙錠。在低濃度的十二烷基硫酸鈉(0−0.1%),溴化乙錠的吸收波長最大值會紅位移而螢光強度會降低;當十二烷基硫酸鈉的濃度超過0.1%,溴化乙錠的吸收波長最大值會藍位移而螢光強度會增強;當十二烷基硫酸鈉的濃度超過臨界微胞濃度後,溴化乙錠的螢光強度維持不變。利用上述現象,溴化乙錠可以拿來檢測十二烷基硫酸鈉的濃度。
利用氣相層析質譜儀分離鑑定七種台灣精油,再透過NIST 08資料庫的比對,可以清楚辨識主要的化學成分。藉由定量分析的實驗,可以得知精油的主要成分含量,比較文獻後發現,不同產地的精油其組成成分會有很大的差異。將七種精油分別加入大腸桿菌培養液中,經過24小時後,發現廣藿香的抑菌效果非常好,只要0.05%的濃度就可以完全抑制大腸桿菌的生長;而丁香羅勒和甜馬鬱蘭的抑菌效果也不差,兩者的最低抑菌濃度都是0.1%。
Ruthenium bipyridine-type compounds, [Ru((CH3)2bpy)2(im)2]2+ and [Ru((COO−)2bpy)2(im)2]2−, were synthesized to evaluate the protein electron transfer property by flash-quench method. After reacting with Ru(NH3)63+, [Ru((CH3)2bpy)2(im)2]2+, with electron donating substitutents, gives quenching yield of 25.1% and formation yield of [RuIII( )2(im)2]3+ species of 42.0%. While [Ru((COO−)2bpy)2(im)2]2−, with electron withdrawing substitutents, has 65.2% of quenching yield and 19.6% of formation yield of [RuIII( )2(im)2]3+ species. In those ruthenium modified cytochrome c, Ru((CH3)2bpy)2(im)(His33)-Fe2+-cyt c has the largest quantum yield of intramolecular electron transfer (17.6%) and the smallest for Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c (11.9%). Although driving force favors for Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c, cage effect and chemical reaction are other variable factors in the trend.
Ru(bpy)2dppz2+, known for its light switch property, had been utilized to evaluate the concentration of SDS. As the concentration of SDS increases, the emission intensity of Ru(bpy)2dppz2+ increases. Unfortunately, at the attempt to lower the SDS concentration below 0.1%, Ru(bpy)2dppz2+ precipitates, therefore, ethidium bromide (EtdBr) was employed. In the low concentration of SDS (0−0.1%), the wavelength of absorption maximum red shifts and the emission intensity decreases. While the concentration of SDS is above 0.1%, the wavelength of absorption maximum blue shifts and the emission intensity is recovering. At above the CMC of SDS, the emission intensity remains unchanged and is higher than that without SDS. An assay for evaluating of SDS concentration by EtdBr has been proposed.
Chemical compositions of seven essential oils from Taiwan had been analyzed by gas chromatography−mass spectroscopy. The eluates had been identified by matching the mass fragment patents to the NIST 08 database. Quantitatively analysis showed the major components are somewhat different from the same essential oils reported that are obtained from other origins. The antibacterial activity of the essential oils against Escherichia coli was evaluated by optical density method. Patchouli is a very effective inhibitor that completely inhibits the growth of E. coli at 0.05%. Clove basil and sweet marjoram are good inhibitors and their upper limits of minimum inhibitory concentration are 0.1%.
Chapter 1
(1) Witt, H. T. Primary reactions of oxygenic photosynthesis. Ber. Bunsen−Ges. Phys. Chem. 1996, 100, 1923-1942.
(2) Nugent, J. H. A. Oxygenic photosynthesis. Eur. J. Biochem. 1996, 237, 519-531.
(3) Hervás, M.; Navarro, J. A.; De la Rosa, M. A. Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 2003, 36, 798-805.
(4) Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163-170.
(5) Gust, D.; Moore, T. A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890-1898.
(6) Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767-776.
(7) Babcock, G. T.; Wikstrom, M. Oxygen activation and the conservation of energy in cell respiration. Nature 1992, 356, 301-309.
(8) Ramirez, B. E.; Malmström, B. G.; Winkler, J. R.; Gray, H. B. The currents of life: the terminal electron-transfer complex of respiration. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 11949-11951.
(9) Brzezinski, P.; Larsson, G. Redox-driven proton pumping by heme-copper oxidases. Biochim. Biophys. Acta−Bioenerg. 2003, 1605, 1-13.
(10) Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: role of the intervening medium. J. Biol. Inorg. Chem. 1997, 2, 399-404.
(11) Bertini, I.; Cavallaro, G.; Rosato, A. Cytochrome c: Occurrence and functions. Chem. Rev. 2005, 106, 90-115.
(12) Wuttke, D. S.; Bjerrum, M. J.; Winkler, J. R.; Gray, H. B. Electron-tunneling pathways in cytochrome c. Science 1992, 256, 1007-1009.
(13) Langen, R.; Chang, I.-J.; Germanas, J. P.; Richards, J. H.; Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: coupling through a beta strand. Science 1995, 268, 1733-1735.
(14) Regan, J. J.; Di Bilio, A. J.; Langen, R.; Skov, L. K.; Winkler, J. R.; Gray, H. B.; Onuchic, J. N. Electron tunneling in azurin: the coupling across a β-sheet. Chem. Biol. 1995, 2, 489-496.
(15) Gray, H. B.; Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 1996, 65, 537-561.
(16) Langen, R.; Colón, J. L.; Casimiro, D. R.; Karpishin, T. B.; Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: role of the intervening medium. J. Biol. Inorg. Chem. 1996, 1, 221-225.
(17) Winkler, J. R.; Di Bilio, A. J.; Farrow, N. A.; Richards, J. H.; Gray, H. B. Electron tunneling in biological molecules. Pure Appl. Chem. 1999, 71, 1753-1764.
(18) Babini, E.; Bertini, I.; Borsari, M.; Capozzi, F.; Luchinat, C.; Zhang, X.; Moura, G. L. C.; Kurnikov, I. V.; Beratan, D. N.; Ponce, A.; Di Bilio, A. J.; Winkler, J. R.; Gray, H. B. Bond-mediated electron tunneling in ruthenium-modified high-potential iron−sulfur protein. J. Am. Chem. Soc. 2000, 122, 4532-4533.
(19) Sutin, N.; Creutz, C. In Inorganic and Organometallic Photochemistry; Wrighton, M. S., Ed.; Advances in Chemistry 168; American Chemical Society: Washington, DC, 1978; pp 1-27.
(20) Durham, B.; Pan, L. P.; Long, J. E.; Millett, F. Photoinduced electron-transfer kinetics of singly labeled ruthenium bis(bipyridine) dicarboxybipyridine cytochrome c derivatives. Biochemistry 1989, 28, 8659-8665.
(21) Chang, I. J.; Gray, H. B.; Winkler, J. R. High-driving-force electron transfer in metalloproteins: intramolecular oxidation of ferrocytochrome c by Ru(2,2'-bpy)2(im)(His-33)3+. J. Am. Chem. Soc. 1991, 113, 7056-7057.
(22) Sprintschnik, G.; Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. Photochemical reactions in organized monolayer assemblies. 6. Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces. J. Am. Chem. Soc. 1977, 99, 4947-4954.
(23) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium. Inorg. Chem. 1978, 17, 3334-3341.
(24) Johnson, E. C.; Sullivan, B. P.; Salmon, D. J.; Adeyemi, S. A.; Meyer, T. J. Synthesis and properties of the chloro-bridged dimer [(bpy)2RuCl]22+ and its transient 3+ mixed-valence ion. Inorg. Chem. 1978, 17, 2211-2215.
(25) Durham, B.; Pan, L. P.; Hahm, S.; Long, J.; Millett, F. In Electron Transfer in Biology and the Solid State; Johnson, M. K., King, R. B., Kurtz, D. M., Jr., Kutal, C., Norton, M. L., Scott, R. A., Eds.; Advances in Chemistry 226; American Chemical Society: Washington, DC, 1989; pp 181-193.
(26) Reddy, K. B.; Cho, M.-o. P.; Wishart, J. F.; Emge, T. J.; Isied, S. S. cis-Bis(bipyridine)ruthenium imidazole derivatives: A spectroscopic, kinetic, and structural study. Inorg. Chem. 1996, 35, 7241-7245.
(27) 錢大恩, 國立台灣師範大學化學研究所碩士論文, 2006年.
(28) Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265-322.
(29) Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966-978.
(30) Brown, G. M.; Sutin, N. A comparison of the rates of electron exchange reactions of ammine complexes of ruthenium(II) and -(III) with the predictions of adiabatic, outer-sphere electron transfer models. J. Am. Chem. Soc. 1979, 101, 883-892.
(31) Cardoso, C. R.; Lima, M. V. S.; Cheleski, J.; Peterson, E. J.; Venâncio, T.; Farrell, N. P.; Carlos, R. M. Luminescent ruthenium complexes for theranostic applications. J. Med. Chem. 2014, 57, 4906-4915.
(32) Mines, G. A.; Bjerrum, M. J.; Hill, M. G.; Casimiro, D. R.; Chang, I. J.; Winkler, J. R.; Gray, H. B. Rates of heme oxidation and reduction in Ru(His33)cytochrome c at very high driving forces. J. Am. Chem. Soc. 1996, 118, 1961-1965.
(33) Winkler, J. R.; Gray, H. B. Electron transfer in ruthenium-modified proteins. Chem. Rev. 1992, 92, 369-379.
Chapter 2
(1) Fenn, J.; Mann, M.; Meng, C.; Wong, S.; Whitehouse, C. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
(2) Covey, T. R.; Huang, E. C.; Henion, J. D. Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. Anal. Chem. 1991, 63, 1193-1200.
(3) Chait, B.; Kent, S. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 1992, 257, 1885-1894.
(4) Mann, M.; Wilm, M. Electrospray mass spectrometry for protein characterization. Trends. Biochem. Sci. 1995, 20, 219-224.
(5) Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996, 379, 466-469.
(6) Bruce, J. E.; Anderson, G. A.; Smith, R. D. “Colored” noise waveforms and quadrupole excitation for the dynamic range expansion of Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 1996, 68, 534-541.
(7) O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007-4021.
(8) Strupat, K.; Karas, M.; Hillenkamp, F.; Eckerskorn, C.; Lottspeich, F. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem. 1994, 66, 464-470.
(9) Ogorzalek Loo, R. R.; Stevenson, T. I.; Mitchell, C.; Loo, J. A.; Andrews, P. C. Mass spectrometry of proteins directly from polyacrylamide gels. Anal. Chem. 1996, 68, 1910-1917.
(10) Hager, D. A.; Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal. Biochem. 1980, 109, 76-86.
(11) Beavis, R. C.; Chait, B. T. High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal. Chem. 1990, 62, 1836-1840.
(12) Mock, K. K.; Sutton, C. W.; Cottrell, J. S. Sample immobilization protocols for matrix-asssisted laser-desorption mass spectrometry. Rapid Commun. Mass Sp. 1992, 6, 233-238.
(13) Cohen, S. L.; Chait, B. T. Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate–polyacrylamide gel electrophoresis gels. Anal. Biochem. 1997, 247, 257-267.
(14) Turro, N. J.; Grätzel, M.; Braun, A. M. Photophysical and photochemical processes in micellar systems. Angew. Chem., Int. Ed. 1980, 19, 675-696.
(15) Granzhan, A.; Ihmels, H.; Viola, G. 9-Donor-substituted acridizinium salts: Versatile environment-sensitive fluorophores for the detection of biomacromolecules. J. Am. Chem. Soc. 2007, 129, 1254-1267.
(16) Paul, B. K.; Ray, D.; Guchhait, N. Binding interaction and rotational-relaxation dynamics of a cancer cell photosensitizer with various micellar assemblies. J. Phys. Chem. B 2012, 116, 9704-9717.
(17) Stevenson, P.; Sones, K. R.; Gicheru, M. M.; Mwangi, E. K. Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya. Acta Trop. 1995, 59, 77-84.
(18) Olmsted, J.; Kearns, D. R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry 1977, 16, 3647-3654.
(19) Waring, M. J. Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 1965, 13, 269-282.
(20) Lepecq, J. B.; Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical—chemical characterization. J. Mol. Biol. 1967, 27, 87-106.
(21) Phukan, S.; Mitra, S. Fluorescence behavior of ethidium bromide in homogeneous solvents and in presence of bile acid hosts. J. Photochem. Photobiol., A 2012, 244, 9-17.
(22) Friedman, A. E.; Chambron, J. C.; Sauvage, J. P.; Turro, N. J.; Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 1990, 112, 4960-4962.
(23) Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737-738.
(24) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051-3058.
(25) Friedman, A. E.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Luminescence of ruthenium(II) polypyridyls: evidence for intercalative binding to Z-DNA. Nucleic Acids Res. 1991, 19, 2595-2602.
(26) Stemp, E. D. A.; Barton, J. K. The flash−quench technique in protein−DNA electron transfer: Reduction of the guanine radical by ferrocytochrome c. Inorg. Chem. 2000, 39, 3868-3874.
(27) Stemp, E. D. A.; Arkin, M. R.; Barton, J. K. Oxidation of guanine in DNA by Ru(phen)2(dppz)3+ using the flash-quench technique. J. Am. Chem. Soc. 1997, 119, 2921-2925.
(28) Arkin, M. R.; Stemp, E. D. A.; Turro, C.; Turro, N. J.; Barton, J. K. Luminescence quenching in supramolecular systems: A comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. J. Am. Chem. Soc. 1996, 118, 2267-2274.
(29) Pal, S. K.; Mandal, D.; Bhattacharyya, K. Photophysical processes of ethidium bromide in micelles and reverse micelles. J. Phys. Chem. B 1998, 102, 11017-11023.
(30) Amouyal, E.; Homsi, A.; Chambron, J.-C.; Sauvage, J.-P. Synthesis and study of a mixed-ligand ruthenium(II) complex in its ground and excited states: bis(2,2'-bipyridine)(dipyrido[3,2-a:2',3'-c]phenazine-N4N5)ruthenium(II). J. Chem. Soc., Dalton Trans. 1990, 1841-1845.
(31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
(32) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.
(33) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665.
(34) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 094107.
(35) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999-3094.
(36) Chambron, J.-C.; Sauvage, J.-P. Ru(bipy)2dppz2+: a highly sensitive luminescent probe for micellar sodium dodecyl sulfate solutions. Chem. Phys. Lett. 1991, 182, 603-607.
(37) Rosen, M. J. In Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, 2004; pp 105-177.
(38) Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319-2358.
(39) Miller, K. J. Additivity methods in molecular polarizability. J. Am. Chem. Soc. 1990, 112, 8533-8542.
(40) Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 1993, 22, 409-416.
(41) Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145-164.
(42) Freed, K. F.; Jortner, J. Multiphonon processes in the nonradiative decay of large molecules. J. Chem. Phys. 1970, 52, 6272-6291.
Chapter 3
(1) Tisserand, R. The art of aromatherapy; C.W. Daniel Co: Saffron Walden, 1985.
(2) Hopkins, C. Thorsons principles of aromatherapy; Thorsons: London, 1996.
(3) Diego, M. A.; Jones, N. A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; Galamaga, M.; McAdam, V.; Galamaga, R. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217-224.
(4) Kovar, K. A.; Gropper, B.; Friess, D.; Ammon, H. P. T. Blood levels of 1,8-cineole and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Med. 1987, 53, 315-318.
(5) Moss, M.; Cook, J.; Wesnes, K.; Duckett, P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int. J. Neurosci. 2003, 113, 15-38.
(6) Herz, R. S. Aromatherapy facts and fictions: a scientific analysis of olfactory effects on mood, physiology and behavior. Int. J. Neurosci. 2009, 119, 263-290.
(7) Moss, M.; Oliver, L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther. Adv. Psychopharmacol. 2012, 2, 103-113.
(8) Mahesh, B.; Satish, S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J. Agric. Sci. 2008, 4, 839-843.
(9) Bobbarala, V.; Katikala, P. K.; Naidu, K. C.; Penumajji, S. Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger F2723. Indian J. Sci. Technol. 2009, 2, 87-90.
(10) Zoubiri, S.; Baaliouamer, A. Chemical composition and insecticidal properties of some aromatic herbs essential oils from Algeria. Food Chem. 2011, 129, 179-182.
(11) Sridhar, S. R.; Rajagopal, R. V.; Rajavel, R.; Masilamani, S.; Narasimhan, S. Antifungal activity of some essential oils. J. Agric. Food Chem. 2003, 51, 7596-7599.
(12) Lee, C.-J.; Chen, L.-W.; Chen, L.-G.; Chang, T.-L.; Huang, C.-W.; Huang, M.-C.; Wang, C.-C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal. 2013, 21, 169-176.
(13) Pérez-González, S.; Zavala-Sánchez, M. A.; Arias-García, L.; Ramos-López, M. A. Anti-inflammatory activity of some essential oils. J. Essent. Oil Res. 2011, 23, 38-44.
(14) Güllüce, M.; Sökmen, M.; Daferera, D.; Aǧar, G.; Özkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Şahi̇n, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958-3965.
(15) Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485-2489.
(16) Kováts, E. Gas-chromatographische charakterisierung organischer verbindungen. teil 1: retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Hel. Chim. Acta 1958, 41, 1915-1932.
(17) van Den Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463-471.
(18) Pino, J. A.; Mesa, J.; Munoz, Y.; Marti, M. P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213-2223.
(19) Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294-3301.
(20) Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822-1828.
(21) Ponce, A. G.; Fritz, R.; del Valle, C.; Roura, S. I. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci. Technol. 2003, 36, 679-684.
(22) Yin, H.-W. Yield and composition variation of essential oil from leaves of different Cinnamomum osmophloeum Kanehira clones in Taiwan. Q. J. Chin. For. 1991, 24, 83-104.
(23) Wang, C.-L.; Yin, H.-W. The locational and seasonal variations of leaf essential oil from cultivated Cinnamomum osmophloeum Kaneh. Taiwan J. For. Sci. 1991, 6, 313-328.
(24) Romeo, F. V.; De Luca, S.; Piscopo, A.; De Salvo, E.; Poiana, M. Effect of some essential oils as natural food preservatives on commercial grated carrots. J. Essent. Oil Res. 2010, 22, 283-287.
(25) Freire, C. M. M.; Marques, M. O. M.; Costa, M. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J. Ethnopharmacol. 2006, 105, 161-166.
(26) Lemos, J. d. A.; Passos, X. S.; Fernandes, O. d. F. L.; Paula, J. R. d.; Ferri, P. H.; Souza, L. K. H. e.; Lemos, A. d. A.; Silva, M. d. R. R. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem. Inst. Oswaldo Cruz 2005, 100, 55-58.
(27) Peterson, A.; Machmudah, S.; Roy, B. C.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 2006, 81, 167-172.
(28) Daferera, D. J.; Tarantilis, P. A.; Polissiou, M. G. Characterization of essential oils from Lamiaceae species by Fourier transform raman spectroscopy. J. Agric. Food Chem. 2002, 50, 5503-5507.
(29) Šipailieneė, A.; Venskutonis, P. R.; Baranauskienė, R.; Šarkinas, A. Antimicrobial activity of commercial samples of thyme and marjoram oils. J. Essent. Oil Res. 2006, 18, 698-703.
(30) Donelian, A.; Carlson, L. H. C.; Lopes, T. J.; Machado, R. A. F. Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. J. Supercrit. Fluid. 2009, 48, 15-20.
(31) Verma, R. S.; Padalia, R. C.; Chauhan, A. Assessment of similarities and dissimilarities in the essential oils of patchouli and Indian Valerian. J. Essent. Oil Res. 2012, 24, 487-491.
(32) Daferera, D. J.; Ziogas, B. N.; Polissiou, M. G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576-2581.
(33) Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879-7885.
(34) Hammer, K. A.; Carson, C. F.; Riley, T. V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853-860.
(35) Flores, F. C.; Lima, J. A.; Ribeiro, R. F.; Alves, S. H.; Rolim, C. M. B.; Beck, R. C. R.; Silva, C. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 2013, 175, 281-286.
(36) Hart, P. H.; Brand, C.; Carson, C. F.; Riley, T. V.; Prager, R. H.; Finlay-Jones, J. J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619-626.
(37) Caldefie-Chézet, F.; Fusillier, C.; Jarde, T.; Laroye, H.; Damez, M.; Vasson, M. P.; Guillot, J. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother. Res. 2006, 20, 364-370.
(38) Carson, C. F.; Riley, T. V. Antimicrobial activity of the essential oil of Melaleuca alternifolia. Lett. Appl. Microbiol. 1993, 16, 49-55.
(39) Cox, S. D.; Mann, C. M.; Markham, J. L.; Bell, H. C.; Gustafson, J. E.; Warmington, J. R.; Wyllie, S. G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170-175.
(40) Cox, S. D.; Mann, C. M.; Markham, J. L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492-497.
(41) Kim, H.-J.; Chen, F.; Wu, C.; Wang, X.; Chung, H. Y.; Jin, Z. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J. Agric. Food Chem. 2004, 52, 2849-2854.
(42) Rudbäck, J.; Bergström, M. A.; Börje, A.; Nilsson, U.; Karlberg, A.-T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem. Res. Toxicol. 2012, 25, 713-721.
(43) Shellie, R.; Marriott, P.; Zappia, G.; Mondello, L.; Dugo, G. Interactive use of linear retention indices on polar and apolar columns with an MS-library for reliable characterization of Australian tea tree and other Melaleuca sp. oils. J. Essent. Oil Res. 2003, 15, 305-312.
(44) Kawakami, M.; Sachs, R. M.; Shibamoto, T. Volatile constituents of essential oils obtained from newly developed tea tree (Melaleuca alternifolia) clones. J. Agric. Food Chem. 1990, 38, 1657-1661.
(45) Verghese, J.; Jacob, C. V.; Kartha, C. V. K.; McCarron, M.; Mills, A. J.; Whittaker, D. Indian tea tree (Melaleuca alternifolia Cheel) essential oil. Flavour Frag. J. 1996, 11, 219-221.
(46) Silva, C. J.; Barbosa, L. C. A.; Maltha, C. R. A.; Pinheiro, A. L.; Ismail, F. M. D. Comparative study of the essential oils of seven Melaleuca (Myrtaceae) species grown in Brazil. Flavour Frag. J. 2007, 22, 474-478.
(47) Lee, S.-J.; Umano, K.; Shibamoto, T.; Lee, K.-G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131-137.
(48) Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J. Agric. Food Chem. 2003, 51, 1566-1570.
(49) Carson, C. F.; Hammer, K. A.; Riley, T. V. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50-62.
(50) Gustafson, J. E.; Liew, Y. C.; Chew, S.; Markham, J.; Bell, H. C.; Wyllie, S. G.; Warmington, J. R. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 194-198.