研究生: |
林啟銘 Chi-Ming Lin |
---|---|
論文名稱: |
基於鄰近像素方向資訊之數位相機CFA內插演算法設計 Design of a CFA Demosaicing Based on Directional Information of Neighboring Pixels for Digital Still Cameras |
指導教授: |
蘇崇彥
Su, Chung-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 色彩內插 、解馬賽克 、貝爾圖形 、數位相機 |
英文關鍵詞: | Color interpolation, Demosaicing, Bayer pattern, Digital still camera |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減少硬體的成本,目前大部分消費型的數位相機都僅使用單一感光元件覆蓋一層色彩濾波陣列去記錄場景中的顏色。色彩內插演算法則是一種用於單一感光元件數位相機的影像處理程序,藉由內插缺少顏色的像素值來重建出全彩的影像。本論文提出一種低複雜度且有效抑制人工錯色的色彩內插演算法。在第一個步驟中,使用鄰近像素的邊緣方向資訊去判斷缺少綠色像素之內插方向;接著使用色彩差值的內插演算法去估測缺少的紅色與藍色像素。在第二個步驟中,本文提出一種新的優化內插演算法,使用色彩差值空間的中值濾波去更新綠色像素;接著使用一種改良的中值濾波方法去提升紅色與藍色像素的品質。實驗結果顯示,本論文所提出來的色彩內插演算法,在主觀的視覺品質與客觀的峰值訊號雜訊比與S-CIELab的評估上,都比近期內所提出來的方法有明顯的改善與提升。
In order to reduce the hardware cost, most digital still cameras(DSCs) use only single-sensor equipped with a color filter array(CFA) to capture the color of the scene presently. Demosaicing algorithm is a process of estimating the missing color values for full-images from incomplete color samples acquired by single-sensor digital still cameras. This paper presents a low-complexity and effective demosaicing algorithm to suppress the color artifacts. In the first step, the directional information of neighboring pixels is used to determine the interpolated directions of missing green pixels; a color-difference algorithm is next used to handle red and blue ones. In the second step, a new refinement algorithm is proposed to update green pixels by a median filter in color-difference space and a modified median filter to refine the other two. Experimental results show that the proposed method is better than the state-of-the-art methods on visually quality subjectively and peak signal-to-noise ratio and S-CIELab metric objectively.
[1] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, Jul. 1976.
[2] H. S. Hou et al., “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust., Speech, Signal Process., Vol. ASSP-26, No.3, pp. 508–517, June 1987.
[3] S.-C. Pei and I.-K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Trans. Circuits Systems Video Technol., vol. 13, no. 6, pp. 503-513, Jun. 2003.
[4] J. E. Adams, “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE 2416, pp. 144–151, 1995.
[5] J. F. Hamilton Jr. and J. E. Adams, “Adaptive color plane interpolation in single color electronic camera,” U. S. Patent 5 629 734, May 1997.
[6] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 997-1013, Sep. 2002.
[7] X. Li, “Demosaicing by successive approximation,” IEEE Trans. Image Process., vol. 14, no. 3, pp. 370-379, March 2005.
[8] C.-Y. Su, “Highly effective iterative demosaicing using weighted-edge and color-difference interpolation,” IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 639-645, May 2006.
[9] J. E. Adams Jr, “Design of practical color filter array interpolation algorithms for digital cameras,” Proc. SPIE, vol. 3028, pp. 117-125, Feb. 1997.
[10] W. Lu and Y.-P. Tan, “Color filter array demosaicing: New method and performance measures,” IEEE Trans. Image Process., vol. 12, no. 10, pp. 1194-1210, Oct. 2003.
[11] P.-S. Tsai, T. Acharya, A. K. Ray, “Adaptive fuzzy color interpolation,” Journal of Electronic Imaging, vol. 11, pp. 1-24, July 2002.
[12] L. Chang and Y.-P. Tan, “Effective use of spatial and spectral correlations for color filter array demosaicking,” IEEE Trans. on consumer electronics, vol. 50, no. 1, pp. 355-365, Feb. 2004.
[13] D. D. Muresan and T. W. Parks, “Demosaicing using optimal recovery,” IEEE Trans. Image Process., vol. 14, no. 2, pp. 267-278, Feb. 2005.
[14] L. Chen, K.-H. Yap, and Y. He, “Color filter array demosaicking using wavelet-based subband synthesis,” IEEE. Int. Conf. Image Process., 2005, vol. 2, pp. 1002-1005.
[15] D. Alleysson, S. Süsstrunk, and J. Hérault, “Linear demosaicing inspired by the human visual system,” IEEE Trans. Image Process., vol. 14, no. 4, pp. 439-449, April 2005.
[16] R. Kimmel, “Demosaicing: Image reconstruction from CCD samples,” IEEE Trans. Image Process., vol. 8, no.9, pp. 1221-1228, Sep. 1999.
[17] X. Li and M. Orchard, “New edge directed interpolation,” IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521-1527, Oct. 2001.
[18] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE Trans. Image Process., vol. 14, no. 3, pp. 360-369, March 2005.
[19] L. Chang and Y.-P. Tan, “Hybrid color filter array demosaicking for effective artifact suppression,” Journal of Electronic Imaging, vol. 15(1), pp. 1-17, Jan.-Mar. 2006.
[20] W. Lee et al., “Cost-effective color filter array demosaicing using spatial correlation,” IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 547-554, May 2006.
[21] C.-Y. Su, “Low-complexity hybrid demosaicing for color filter arrays,” Journal of Chinese Institute of Engineers, vol. 31, no. 1, pp. 173-179, 2008.
[22] T. W. Freeman, “Median Filter for Reconstructing Missing Color Samples,” U.S. Patent 4 724 395, 1988.
[23] Kodak test images and the demosaicing code of successive approximation available at http://www.csee.wvu.edu/~xinl/demo/demosaic.html.
[24] S-CIELab Metric (2003). [Online]. Available at http://white.stanford.edu/~brian/scielab/scielab.html.