研究生: |
莊宗奇 |
---|---|
論文名稱: |
厚膜熱電材料應用於平面微型發電元件之研製 Development of planar micro generator using thick-film thermoelectric materials |
指導教授: | 楊啟榮 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 網版印刷 、熱電材料 、導電高分子 、平面微型發電元件 |
英文關鍵詞: | screen-printing, thermoelectric material, conductive polymer, planar micro generator |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球石油蘊藏量日漸枯竭及溫室氣體的排放造成全球暖化,世界各國對再生或新興能源的研究日益重視。熱電材料具有可將熱能與電能相互轉換產生發電或致冷功能的特性,熱電微發電元件具有體積小、無汙染、高壽命且容易與IC元件整合等優點,故熱電發電技術早已在國外各領域應用。由於精密網印技術可在一次印刷過程中完成功能性厚膜結構製作,故有利於實現產品之快速、大量生產。因此本研究將利用精密網印技術取代傳統熱電能源產生器的製造技術,嘗試使用SU-8負型光阻作為有機黏著劑,並添加Eeonomer R300F導電高分子粉末,以進行特性改良,製作出符合綠色能源之平面厚膜微型熱電發電元件。
研究結果顯示,本研究成功調配出含導電高分子Eeonomer R300F之SU-8負光阻有機黏著劑,並混合p型Sb2Te3與n型Bi2Te熱電粉末,製作成可用於印刷之SU-8版熱電漿料。另外,本研究並將乙基纖維素(Ethyl-cellulose)、a-松油醇(Alpha-terpineol)和Sb2Te3與Bi2Te熱電粉末進行混合,進行乙基纖維素(Ethyl-cellulose, EC)版印刷用熱電漿料之製作,針對兩種不同之有機黏著劑,在不同熱處理溫度與時間的條件下進行探討。
SU-8版熱電材料,在熱處理條件290 oC與12小時的情況下,得到Sb2Te3和Bi2Te3的席貝克值分別為24.99 uV/K、-54.52 uV/K,導電率則是27.47 S/m、16.72 S/m。當熱處理溫度提高到500 oC時,熱電材料的席貝克值變化為42.25 uV/K、-21.45 uV/K,導電率則提高到60.98 S/m、32.05 S/m。乙基纖維素版熱電材料,在熱處理溫度500 oC、熱處理時間2小時的情況下,可得到Sb2Te3和Bi2Te3之席貝克值與導電率分別為106.86 uV/K、-79.17 uV/K,和82.64 x10^2 S/m、84.75 x10^2 S/m。
本研究接著以網版印刷技術,配合先前的漿料調配比例與熱處理參數,進行熱電微型平面發電元件之印製。銀膠電極線寬設計為500 um,印刷厚度約為41.74 um,熱電結構之線寬設計為250~1000 um,印刷SU-8版之p型與n型熱電結構厚度,分別為28.07 um和45.65 um,乙基纖維素版p型與n型熱電結構印刷厚度則分別為37.54 um和26.01 um。
研究結果顯示,本研究中最佳電壓輸出特性之設計,是在線寬500 um、熱電接腳長度10 mm和30對熱電偶的條件下。在溫度差40 K的時候,可得到290 oC、12小時熱退火之SU-8版熱電元件,輸出電壓為26.3 mV,退火條件500 oC、12小時之SU-8版熱電元件,則可得到60.4 mV的輸出電壓,乙基纖維素版熱電元件,在500 oC、2小時熱退火參數時,有196.6 mV的電壓輸出。配合多層堆疊製程,完成500 oC、12小時熱退火條件,SU-8版3D多層微平面熱電能源產生器,並量測其輸出特性。量測結果顯示3層堆疊之熱電模組,可以較單一元件有約2.6倍的電壓輸出和5.8倍的功率輸出,40 K溫差條件下,可得到156.7 mV和88.635 uW的輸出特性。
In view of the oil reserves are depleting, and greenhouse gas emissions blamed for global warming, the world is increasing emphasis on renewable energy research. Thermoelectric materials have the characteristics of heat, and electrical conversion that can use for the power generation or cooling. The thermoelectric micro power generation component has a small, non-polluting, high life, and easy integration with IC components. The thermoelectric power generation technology has been application of various fields in foreign countries. Because of screen-printing has ability in once printing process to product the functional
thick-film, so that is beneficial to achieve rapid product, and mass production. Therefore, this study will use of precision screen printing technology to replace traditional fabrication of thermoelectric devices. Trying to use the SU-8 negative photoresist as an organic adhesive, and add conductive polymer Eeonomer R300F in organic adhesive to improve the conductivity. Producing a thick-film planar thermoelectric power generator that to meet green energy requirement.
The study results show that organic adhesive of SU-8 photoresist mixing Eeonomer R300F has been successfully developed, and add Sb2Te3 p-type or n-type Bi2Te3 thermoelectric powder, made into a printable thermoelectric inks. In addition, mix Ethyl-cellulose, Alpha-terpineol, and Sb2Te3 or Bi2Te3 to making Ethyl-cellulose, EC version thermoelectric ink. In different annealing conditions, explore two different types of organic adhesives.
The SU-8 version thermoelectric materials in the annealing conditions of 290 oC, and 12 hours, Seebeck coefficient of Sb2Te3 and Bi2Te3 are 24.99 uV/K, and
-54.52 uV/K, conductivity are 27.47 S/m, and 16.72 S/m. When the annealing temperature rise to 500 oC, Seebeck coefficient changed to 42.25 uV/K, and -21.45 uV/K, conductivity increased to 60.98 S/m, and 32.05 S/m. EC version thermoelectric materials, in the annealing conditions of 500 oC, and 2 hours, Seebeck coefficient, and conductivity of Sb2Te3, and Bi2Te3 were 106.86 uV/K, -79.17 uV/K; 82.64 x10^2 S/m, and 84.75 x10^2 S/m.
Then we use screen printing technology, with the proportion of thermoelectric ink, and annealing parameters, to printing the planar thermoelectric generator. The linewidth of silver electrode is 500 um, and thickness is 41.74 um. The linewidth of thermoelectric structure is designed for 250~1000 um, thickness of SU-8 version p-type, and n-type thermoelectric structures are 28.07 um, and
45.65 um, respectively. The thickness of EC version p-type, and n-type thermoelectric structures are 37.54 um, and 26.01 um, respectively.
The results show the design of 500 um in linewidth, 10 mm in length, and 30 pairs in thermocouples have maximum output voltage. When a temperature difference of 40 K, the SU-8 version thermoelectric device with 290 oC, and 12 hr annealing has 26.3 mV output voltages, annealing conditions of 500 oC, and 12 hr can get output voltage of 60.4 mV. The EC version thermoelectric devices with 500 oC, and 2 hr annealing can get 196.6 mV output voltages. Then we use
multi-layer stacking process, to complete the SU-8 version 3D multi-layer planar thermoelectric generator, and measure its output characteristics. The measurement results show that thermoelectric modules of 3-layers stacked, about 2.6 times of voltage output, and 5.8 times of power output compared with single. When a temperature difference of 40 K, the thermoelectric module has 156.7 mV output voltage, and 88.635 uW output power can be obtained.
1.
http://www.sii.co.jp/
2.
黃振東等人, "節能減碳潮流下之全球熱電發電技術發展", 工業材料雜誌, 第286期, pp. 109-118 (2010).
3.
黃振東等人, "台灣熱電發電技術發展之機會與挑戰", 工業材料雜誌, 第298期, pp. 112-122 (2011).
4.
http://electronics-cooling.com/
5.
D. M. Rowe, "Development of improved modules for the economic recovery of low temperature waste heat", IEEE, 16th International Conference on Thermoelectrics, pp.532-538 (1997).
6.
D. M. Rowe and G. Min, "Evaluation of thermoelectric modules for power generation", Journal of Power Source, Vol. 73, pp. 193-198 (1998).
7.
T. Kajikawa and T. Onishi, "Development for advanced thermoelectric conversion system", 2007 International Conference on Thermoelectrics, pp. 322-330 (2007).
8.
J. C. Bass, N. B. Elsner, and F. A. Leavitt, "Performance of the 1 kW thermoelectric generator for diesel engines", 14th International Conference on Thermoelectrics, (1994).
9.
http://www.hi-z.com/
10.
K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, "Thermoelectric module and generator for gasoline engine vehicle", IEEE, 17th International Conference on Thermoelectric, pp. 464-474 (1998).
11.
李進興 等人, "車輛引擎廢熱回收電力再生系統發展趨勢", 中華民國燃燒學會季刊, Vol. 18, No.3, pp. 24-31 (2009).
12.
J. LaGrandeur, D. Crane, S. Mazar, and A. Eder, "Automotive waste heat conversion to electric power using skutterudite, TAGS, PbTe and BiTe", 2006 International Conference on Thermoelectrics, pp. 343-348 (2006).
13.
T. Caillat, J. P. Fleurial, G. J. Snyder, and A. Borshchevsky, "Development of high efficiency segmented thermoelectric unicouples", 20th International Conference on Thermoelectrics, pp. 282-285 (2001).
14.
S. Sampath, "Thermal spray applications in electronicsand sensors: past, present, and future", Journal of Thermal Spray Technology, Vol. 19, pp. 921-949 (2010).
15.
L. Zuo, J. Longtin, S. Sampath, B. Li, and Q. Li, "NSF-DOE TE partnership:Integrated design and manufacturing of cost-effective & industrial-scalable TEG for vehicle applications", 2011 DOE Thermoelectrics Workshop, (2011).
16.
蔡永明, "網版製版印刷實務", 貝星貿易股份有限公司, (1997).
17.
A. del Campo, and C. Greiner, "SU-8:a photoresist for high-aspect-ratio and 3D submicron lithography", Journal of Micromechanics and Microengineering, Vol. 17, pp. 81-95 (2007).
18.
D. M. Rowe, "Thermoelectrics handbook macro to nano", (2006).
19.
D. J. Yao, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, (2001).
20.
http://www.thermoelectrics.caltech.edu/
21.
李炳仁, "從2010國際熱電技術研討會看最新技術發展", 材料世界網, (2010).
22.
J. Zhang, H. Tong, G. Liu, J. A. Herbsommer, G. S. Huang, and N. Tansu, "Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents", Journal of Electronic Materials, Vol. 109, 053706 (2011).
23.
Y. Zhang, M. S. Dresselhaus, Y. Shi, Z. Ren, and G. Chen, "High Thermoelectric Figure-of-Merit in Kondo Insulator Nanowires at Low Temperatures", Nano Lett. 2011, 11, pp. 1166-1170 (2011).
24.
A. Borshchevsky, "Handbook of thermoelectrics", (1995).
25.
D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science, Vol. 33, pp.5595-5600 (1998).
26.
T. S. Oh, D. B. Hyun, and N. V. Kolomoets, "Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys", Scripta Materialia, Vol. 42, pp. 849-854 (2000).
27.
O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Electronic Materials, Vol. 93, pp. 368-374 (2003).
28.
http://people.deas.harvard.edu/
29.
L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, pp.678-681 (1995).
30.
L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 single-crystals", Inorganic Materials, Vol. 31, pp. 682-686 (1995).
31.
L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials, Vol. 33, pp. 558-561 (1997).
32.
J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting", Journal of Crystal Growth, Vol. 277, pp. 258-263 (2005).
33.
http://www.dynacer.com/
34.
H. C. Kim, S. K. Lee, T. S. Oh, and D. B. Hyun, "Thermoelectric properties of the hot-pressed Bi2(Te, Se)3 alloys with the Bi2Se3 content and addition of scattering center", IEEE, 17th International Conference on Thermoelectric, pp. 174-177 (1998).
35.
D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science, Vol. 36, No. 5, pp. 1285-1291 (2001).
36.
http://www.hardwaresource.com
37.
J. Seo, C. Lee, and K. Park, "Thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compound fabricated by hot pressing and hot extrusion", Journal of Materials Science Letters, Vol. 35, pp. 1549-1554 (2000).
38.
J. Seo, D. Lee, C. Lee, and K. Park, "Microstructure, mechanical properties and thermoelectric properties of p-type Te-doped Bi0.5Sb1.5Te3 compounds fabricated by hot extrusion", Journal of Materials Science Letters, Vol. 16, pp. 1153-1156 (1997).
39.
http://www.shi.co.jp/
40.
J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi, Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, pp. 347-351 (2005).
41.
A. Yadav, K. Pipe, and M. Shtein, "Fiber-based flexible thermoelectric power generator", Journal of Power Sources, Vol. 175, pp. 909-913 (2008).
42.
J. P. Carmo, L. M. Goncalves, R. F. Wolffenbuttel, and J. H. Correia, "A planar thermoelectric power generator for integration in wearable microsystems", Sensors and Actuators A: Physical, Vol. 161, pp. 199-204 (2010).
43.
伍秀菁 等人, "真空技術與應用", 儀器科技研究中心, (2001).
44.
D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films, Vol. 510, pp. 148-153 (2006).
45.
S. D. Kwon, B. K. Ju, S. J. Yoon, and J. S. Kim, "Fabrication of Bismuth Telluride-Based Alloy Thin Film Thermoelectric Devices Grown by Metal Organic Chemical Vapor Deposition", Journal of Electronic Materials, Vol. 38, pp. 920-924 (2009).
46.
G. Leimkűhler, I. Kerkamm, and R. R. Koch, "Electrodeposition of antimony telluride", Journal of The Electrochemical Society, Vol. 149, pp. 474-478 (2002).
47.
E. Schwyter, W. Glatz, L. Durrer, and C. Hierold, "Flexible Micro Thermoelectric Generator based on Electroplated Bi2+xTe3-x", DPIP of MEMS/MOEMS, pp. 9-11 (2008).
48.
http://www.materialsnet.com.tw/
49.
J. Weber, K. P. Kamloth, F. Haase, P. Detemple, F. Völklein, and T. Doll, "Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics", Sensors and Actuators A, Vol. 132, pp. 325-330 (2006).
50.
J. Wüsten and P. K. Karin, "Organic thermogenerators for energy autarkic systems on flexible substrates", Journal of Physics D: Applied Physics, Vol. 41, 135113 (2008).
51.
P. Markowski, A. Dziedzic, "Planar and three-dimensional thick-film thermoelectric microgenerators", Microelectronics Reliability, Vol. 48, pp. 890-896 (2008).
52.
C. Navone, M. Soulier, M. Plissonnier, and A. L. Seiler, "Development of (Bi,Sb)2(Te,Se)3-Based Thermoelectric Modules by a Screen-Printing Process ", Journal of Electronic Materials, Vol. 39, pp. 1755-1761 (2010).
53.
H. B. Lee, J. H. We, H. J. Yang, K. Kim, K. C. Choi, B. J. Cho, "Thermoelectric properties of screen-printed ZnSb film", Thin Solid Films, Vol. 519, pp. 5441-5443 (2011).
54.
H. B. Lee, H. J. Yang, J. H. We, K. Kim, K. C. Choi, B. J. Cho, "Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method", Journal of Electronic Materials, Vol. 40, pp. 615-619 (2011).
55.
D. Madan, A. Chen, P. K. Wright, and J. W. Evans, "Dispenser printed composite thermoelectric thick films for thermoelectric generator applications", Journal of Electronic Materials, Vol. 109, 034904 (2011).
56.
D. Madan, A. Chen, P. K. Wright, and J. W. Evans, "Dispenser-printed planar thick-film thermoelectric energy generators", Journal of Micromechanics and Microengineering, Vol. 21, 104006 (2011).
57.
F. M. Smits, "Measurements of sheet resistivity with the four-point probe", Bell System Technical Journal, pp. 711-718 (1958).