研究生: |
吳季穎 Wu, Chi-Ying |
---|---|
論文名稱: |
大學課外活動組行政資源分配的賽局理論分析:以國立屏東大學為例 Game-theoretical analysis for administrative resources allocation of the extracurricular activity division of a university: A case study on National Pingtung University |
指導教授: |
廖于賢
Liao, Yu-Hsien |
口試委員: |
廖于賢
Liao, Yu-Hsien 劉若蘭 Liu, Ruo-Lan 楊柏遠 Yang, Po-Yuan |
口試日期: | 2022/06/23 |
學位類別: |
碩士 Master |
系所名稱: |
公民教育與活動領導學系學生事務碩士在職專班 Department of Civic Education and Leadership_Continuing Education Master's Program of Student Affairs in Higher Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 組織/結構模式 、行政資源 、賽局理論 、不可分割消費加權分配 |
英文關鍵詞: | Models of Structural/Organizational Environments, Administrative resources, Game Theory, The weighted allocation of nonseparable costs |
研究方法: | 文獻分析法 、 數學模型架構 |
DOI URL: | http://doi.org/10.6345/NTNU202201224 |
論文種類: | 學術論文 |
相關次數: | 點閱:72 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
校園裡的設施、人員及組織等都與學校環境環環相扣,而校園各種環境,例如:建築、圖像與組織等,皆暗自影響著學生的發展,而校內各單位的資源分配亦以上述各種環境為依歸而進行決策制定及運用。透過不同的角度探究大學課外活動組資源分配的合理性,使資源在使用上更為公平。
行政資源含蓋權力、人員、器材、財務等,而行政單位各項資源的投入管道多元複雜,在管理及實際運作上各有不同的策略和評估方式,本研究應用賽局理論中的一種分配方法:不可分割消費加權分配,評估分析並提出合理的分配方法。本研究以國立屏東大學課外活動指導組(以下簡稱課指組,該組自2020年8月1日更名為學生活動發展組)人員及各項業務為研究對象,藉此提出本研究對於不同以往的資源分配概念並實際應用。研究結果如下:
一、將各項業務及評鑑結果轉化為數值,透過公式化分析所得到的數據資料,與歷年業務人員執行經驗結果比較,是有差異的,這種差異主要來自於人類的理性與非理性狀態,也就是在資源分配上取決個人自由心證,因此透過數學模式化能有效使行政單位決策制定與資源分配達到公平及合理性。
二、不可分割消費加權分配分析資源管理分配的結果發現,何種業務、決策在資源上所獲得的分配情形為何,也就是所取得的評分項的重要程度予以加權後探究分數高者需得到的資源相對加註其中,使其達到最佳均衡狀態,亦即達到公平且合理性。
三、運用本研究結果將實際取得的資料進行資源分配,結論證明實際案例應用之可行性。在針對課指組人員如何應用提出建議,使業務的執行提昇效率。
The facilities, administrative human resource and organizational structure of a campus are closely linked to the campus environment. Different aspects of campus environment such as buildings, signages and organizational structure invisibly affect student developments. Resource allocations of various administrative units in the campus are decided and established in accordance to the above-mentioned environments. The rationality of resource allocation in the Extra-Curricular Activities Section in universities was explored from different perspectives in order to make the use of resources fairer.
Administrative resources include: administrative power, personnel, equipment and finance. While the input channels of various resources in administrative units are diverse and complex, but there are different strategies and evaluation methods in management and actual operation. This research explores the allocation method of the Game Theory by applying the weighted allocation of nonseparable costs which evaluates, analyzes and proposes a reasonable allocation strategy. The main objective of this research is the administrative staff and various business functions of the Extra-Curricular Activities Section of The National Pingtung University (the business unit has since been renamed as the Student Activity Development Section from 01 August 2020) in order to identify practical solutions and applications of new resource allocation concepts and methods that will differentiate from the previous practices. The results of this research are as below:
1) The business and evaluation results are converted into numerical values, and the data obtained through formulaic analysis are different from the results of administrative personnel’s previous executive experience in the past. This difference mainly comes from the rational and irrational state of human beings, which explains resource allocation depends on a personal’s own perspectives. Therefore, the decision-making and resource allocation of administrative units can be made fair and more efficient through mathematical modeling.
2) The analysis of resource allocation management based on the weighted allocation of nonseparable costs has discovered the important correlation between the efficiency of resource allocation and its interactions with the type of business operations, and strategic decision-making. It is therefore important to ensure each scored item is weighted and the resources of those with high scores will need to be included to achieve the best equilibrium based on fairness and rationality.
3) The outcome of this research data will be used to allocate the resources, and the conclusion will proof the feasibility of the practical case application. In addition, suggestions will be made on how to apply to the personnel of the bsuiness unit's instruction group to improve the efficiency of executive business decision-making.
王正、鄭文輝、吳明儒、鄭清霞、傅從喜、王舒芸,(2007)。我國社會福利資源整合與合理化之研究,行政院經濟建設委員會委託研究。
李育枝、梁朝雲(2012)。大學校院學生事務教育者之組織學習與工作效能,學生事務,51,15-45。
李政翰(2015)。我國推動大學校務研究之策略。評鑑雙月刊,57,009-015。
林文隆(2010)。運用平衡計分卡探討國防大學校務經營績效衡量模式之研究。國防大學管理學院資源管理及決策研究所碩士論文,未出版,桃園市。
林合懋、陳昭雄(2010)。弘光學報,63,110。
林明地(2002)。教育改革浪潮下的學校生態:對學校經營的啟示。現代教育論壇新世紀的學校經營策略,19-26。臺北:國立教育資料館。
吳桂蜜(2008)。科技大學校務品質內涵與策略之分析。國立雲林科技大學技術及職業教育研究所碩士論文,未出版,雲林縣。
吳清山、林天祐(2011)。教育名詞:馬太效應。教育資料與研究雙月刊,103,173-174。
陳木金(2002)。學校領導研究。高等教育出版社。
陳昭雄、林合懋、許仁慈(2007)。近四年全國私立大專校院訓輔經費預算編列暨執行管控變化趨勢之探討,弘光學報,51,81-96。
陳振益(2014)。學校行政運作的現況與人員的培育。臺灣教育評論月刊,3(4),8-10。
張雪梅(2016)。淺析臺灣高等教育學生事務主管領導力-從大學校院學務人力角度分析,學生事務與輔導,55,12-25。
張維迎(1999)。賽局理論與訊息經濟學。台北:茂昌。
張維益(2006)。台灣標竿型大學的顧客關係管理導向校務e化效益探討。國立東華大學企業管理學系碩士論文,未出版,花蓮縣。
梁朝雲、陳新霖、趙翠雲、許育齡(2008)。課外活動的策略管理─從元智大學經驗談課外活動指導組的經營策略,理論與實務,47,83-94。
黃玉(2001)。大學學生事務的理論與應用。載於林至善(主編),學生事務與社團輔導,36-80。臺北市:東吳大學課外活動組。
黃玉(2003)。從環境中增進學生事務功能論學校環境與學生發展。文教新潮,8:2卷頁1-11。
曾俊傑、王文正(2017)。IPA模式探討學生事務服務品質研究,華醫學報,46,26-45。
葉立誠、葉至誠編(1999)。研究方法與論文寫作。台北:商鼎文化公司。
楊朝祥(2017, February 10)。高教正面對嚴峻的挑戰【線上論壇】。取自 https://www.npf.org.tw/1/16588
鄭佩宜(2004)。大學生校務意見表達溝通媒介使用行為與溝通滿意關係之研究。國立屏東科技大學資訊管理系碩士論文,未出版,屏東縣。
劉燕燕(2003)。整合式多媒體資訊管理系統之設計策略與研究-以屏東科技大學校務行政管理資訊系統為例。國立屏東科技大學資訊管理系碩士論文。
鍾皓軒(2018)。精準校務管理──學生對校務資源的期望與實際落差?讓差異化分析來告訴您!。評鑑雙月刊,76,54-57。
A course in game theory. Thomas, S.F.(2020)World Scientific Press Co.
Banzhaf, J.F.(1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Rev, 19, 317-343.
Brink, R. van den., & Lann, G. van. der.(1998). Axiomatizations of the normalized banzhaf value and the Shapley value. Social Choice and Welfare, 15, 567-582.
B. Woodard Jr.,& Associates, Student services: A handbook for the profession.(3rd., pp. 244-268). San Francisco: Jossey-Bass.
Donald Cox and George Jakubson(1995), The connection between public transfers and private interfamily transfers, Journal of Public Economics, 57, issue 1, p. 129-167, from https://EconPapers.repec.org/RePEc:eee:pubeco:v:57:y:1995:i:1:p:129-167.
Dunn, W.(1998).Harold Lasswell and the Study of Public Policy. Oxford Research Encyclopedia of Politics. Retrieved 7 May. 2021, from https://oxfordre.com/politics/view/10.1093/acrefore/9780190228637.001.0001/acrefore-9780190228637-e-600.
Driessen, T. S. H., Tijs, S. H.(1985)The cost gap method and other cost allocation methods for multipurpose water projects. Water Resources Research,10, 1469--1475.
Dubey, P., & Shapley, L.S.(1979). Mathematical properties of the Banzhaf power index. Math. Oper. Res, 4, 99-131.
Haller, H.(1994). Collusion properties of values. International Journal of Game Theory, 23, 261-281.
Hart, S., & Mas-Colell, A.(1989). Potential, value and consistency. Econometrica, 57, 589-614.
Huang, C.H., Chi, E.C., Hsieh, Y.L., Xu, B.C., Liao, Y.H.(2016). Alternative reduction and related axiomatic results for an extended Shapley value. Far East Journal of Mathematical Sciences, 99, 1109-1117.
Hwang, Y.A.(2006)An NTU Value under Complement Reduced Game. International Journal of Game Theory, 38, 305-324.
Hwang, Y.A.(2006)Associated consistency and equal allocation of nonseparable costs. Economic Theory ,28, 709--719.
Hwang, Y.A., & Hsiao, Y.H.(2007)Internal dividend, External loss and value. Economics Bulletin, 3, 1-5.
Hwang, Y.A., & Liao, Y.H.(2010)Consistency and dynamic approach of indexes. Social Choice and Welfare, 34, 679-694.
Hwang, Y.H.; Liao, Y.H.(2010)Consistency and dynamic approach of indexes. Social Choice and Welfare ,34, 679--694.
Joel, W.(2002),Strategy-An introduction to Game Theory. New York: W. W. Norton.
Lehrer, E.(1988). An axiomatization of the Banzhaf value. International Journal of Game Theory, 17, 89-99.
Liao, Y.H., Chung, L.Y., Wu, P.H.(2016). The EANSC: a weighted extension and axiomatization. Economics Bulletin, 35, 475-480.
Liao, Y.H.(2008)The maximal equal allocation of nonseparable costs on multi-choice games. Economics Bulletin ,3, 1--8.
Liao, Y.H.(2012)The duplicate extension for the equal allocation of nonseparable costs. Operational Research: An International Journal, 13, 385--397.
Liao, Y. H.; Chung, L. Y.; Wu, P. H.(2015)The EANSC: a weighted extension and axiomatization. Economics Bulletin, 35, 475--480.
Maschler, M., & Owen, G.(1989). The consistent Shapley value for hyperplane games. International Journal of Game Theory, 18, 389-407.
Moulin, H.(1985)The separability axiom and equal-sharing methods. Journal of Economic Theory, 36, 120--148.
Myerson, R.(1980). Conference Structures and Fair Allocation Rules. International Journal of Game Theory, 9, 169-182.
Owen, G. Game theory.(1995)3rd Ed. Academic Press, San Diego.
Ransmeier, J.S. The Tennessee Valley Authority. Vanderbilt University Press: Nashville, TN, USA, 1942.
Shapley, L.S.(1953). A value for -person game. In: Kuhn HW, Tucker AW(eds.), Contributions to the Theory of Games II, Annals of Mathematics Studies, 28, 307-317. Princeton University Press, Princeton.
Stearns, R.E.(1968). Convergent transfer schemes for -person games. Trans. Amer. Math. Soc, 134, 449-459.
Strange, C. C. & Banning, J. H.(2001). Educating by design: Creating campus learning environments that work. San Francisco: Jossey-Bass.
Strange, C. C.(1996). Dynamics of campus environments. In S.R. Komives, D.
Sun, P.; Hou, D.; Sun, H.(2017)Optimization implementation and characterization of the equal allocation of nonseparable costs value. Journal of Optimization Theory and Applications, 173, 336--352.
Wei, H. C., Liu, P. T., Liou, J. N., & Liao, Y. H. (2019) Two optimal allocations under management systems: Game-theoretical approaches. International Journal of Information and Management Sciences, 30, 99-112.
Young, H.P.(1985). Monotonic solutions of cooperative games . International Journal of Game Theory, 14, 65-72.