簡易檢索 / 詳目顯示

研究生: 陳巧貞
Chiao-Chen Chen
論文名稱: 多頻道石化工業有機氣體壓電感測器研製與應用
Multi-channel piezoelectric crystal gas sensor for organic pollutants from petrochemical plants
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
中文關鍵詞: 多頻道感測器陣列石英壓電感測器石化工業主成份分析法倒傳遞神經網路
英文關鍵詞: Multi-channel sensor array, QCM, PCA, BPN
論文種類: 學術論文
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對石化工業空氣有機污染物,本研究自行研製了對氣體分子具辨識能力的一組六頻道之氣體壓電感測器陣列,藉以監測石化工業中6種常見的致癌性排出物及重要之石化基本原料包括:苯(benzene)、苯乙烯(styrene)、氯仿(chloroform)、辛烷(octane)、己烯(hexene)及己炔(hexyne)。藉由主成份分析法(PCA)分析修飾有不同吸附劑之壓電晶體感測頻道所收集的頻率訊號,可由22種吸附劑中挑選出6種最適合偵測目的之塗佈物。進行主成份分析後,所抽取出之前四個主成份已可解釋樣本數據變異量之97.5 %,且Polyisobutylene、SE30、C60/PPA、4-tert-Butylcalix[6]arene、Cholesteryl chloroformate及Ag(Ⅰ)/cryptand-2,2/Ethylene diamine/NH3/ Polyvinyl chloride等六種在主成份分析中具有代表性的石英晶體塗佈物被選出。此外,進一步探討吸附劑之塗佈量對感測訊號之影響並找出最適當的塗佈量,於本研究中固定各頻道之塗佈量為10μg。
    對6種目標偵測物之定性分析藉由二維的X-Y主成份分數散佈圖、雷達圖及倒傳遞神經網路這三種辨識技術來達成,定量分析則藉由簡單性線迴歸進行檢量線之製備。對特定目標分析物之最佳感測頻道所得線性迴歸R2值皆達0.995以上,偵測下限可達0.068-1.127 mg/L,感測訊號也表現出良好之再現性,RSD(n=10)值介於1.1-9.6%。此六頻道壓電感測陣列也被嘗試用於分辨混合有機氣體樣品,利用倒傳遞神經網路可成功辨識出混合樣品中的組成成分,並藉由複回歸分析定量混合樣品各組成成分之含量。因混合樣品中各組成成分之揮發能力強弱不同,而造成製備與檢測過程中樣品各組成之濃度與理論濃度有所差異,影響定量分析之準確性,但所得複回歸檢量線之線性迴歸R2值仍可達0.95以上。

    中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1化學感測器陣列(Chemical sensor arrays)與電子鼻(Electronic nose) 1 1-1-1化學感測器簡介 1 1-1-2電子鼻(Electronic nose) 3 1-1-2. 1化學感測器陣列(Chemical sensor array) 4 1-1-2. 2模式辨識技術(Pattern recognition technology) 12 1-2主成分分析(Principal component analysis) 16 1-2-1基本原理 18 1-2-2主成分分析之應用 20 1-2-3成分分數 22 1-3類神經網路(Artificial neural network) 24 1-3-1生物神經元 24 1-3-2人工神經元模型 25 1-3-3類神經網路分類 28 1-3-4倒傳遞神經網路(Backpropagation neural network) 29 1-4迴歸分析(Regression analysis) 37 1-5壓電晶體 38 1-5-1壓電晶體之壓電性 38 1-5-2石英震盪器 40 1-5-3 AT-cut石英震盪晶體的特性 43 1-5-4石英震盪器的線路 44 1-5-5震盪頻率的量測 45 1-5-6石英微量天平 47 1-5-7氣體石英壓電感測器 51 1-6感測器微電腦界面 55 1-7研究動機 56 第二章 實驗部分 58 2-1藥品與儀器 58 2-2石英晶片表面修飾 59 2-2-1石英晶體 59 2-2-2表面塗佈液配製 59 2-2-3表面塗佈法 61 2-3多頻道氣相壓電感測系統 62 2-3-1石英壓電晶體起振線路 62 2-3-2多頻道氣體壓電感測器界面設計 63 2-3-2.1 界面線路設計 63 2-3-2.2 系統控制流程 68 2-3-3多頻道靜相石英壓電感測系統 69 2-4實驗數據處理流程 71 2-4-1主成分分析法 71 2-4-2倒傳遞神經網路分析法 73 第三章 實驗結果與討論 75 3-1多頻道石英壓電感測系統之偵測訊號 76 3-1-1石英壓電感測器陣列各頻道偵測訊號之比較 76 3-1-2不同有機物對同一塗佈膜之感應現象 77 3-1-3不同塗佈膜對同一有機物之感應現象 77 3-1-2不同揮發性有機物對同一塗佈膜之感應現象 79 3-1-3不同塗佈膜對同一揮發性有機物之感應訊號 79 3-2主成分分析應用於感測器陣列塗佈物之選擇 83 3-2-1主成分分析應用原理 84 3-2-2主成分分析摘要表(PCA summary table) 86 3-2-3主成分與感測器陣列各頻道之相關性 88 3-2-4主成分分析散佈圖(Principal component analysis scores map) 91 3-3單一揮發性有機物的定性與定量 93 3-3-1各種揮發性有機物之雷達辨識圖 93 3-3-2塗佈量對感應頻率變化之影響 96 3-3-3待測物濃度對感應頻率變化之影響 103 3-3-4 各頻道對六種揮發性有機污染物之偵測下限與再現性 110 3-4倒傳遞類神經網路應用於混合有機氣體感測 113 3-4-1倒傳遞類神經網路辨識單一揮發性有機物 114 3-4-1.1倒傳遞類神經網路參數設定 116 3-4-1.2單一揮發性有機物之定性分析 121 3-4-1.3單一揮發性有機物之定量分析 126 3-4-2倒傳遞類神經網路辨識混合揮發性有機物 129 3-4-2.1倒傳遞類神經網路參數設定 131 3-4-2.2混合揮發性有機物之定性分析 138 3-4-2.3混合揮發性有機物定量分析 143 第四章 結論 147 參考文獻 149

    1. http://www.chem.qmul.ac.uk/iupac/
    2. Stetter, J. R.; Penrose, W. R.; Sheng Yao, Sensors, Chemical Sensors, Electrochemical Sensors, and ECS, Journal of The Electrochemical Society 2003, 150(2), S11-S16.
    3. Stetter, J. R.; Penrose, W. R., Understanding Chemical Sensors and Chemical Sensors Arrays (Electronic Noses): Past, Present, and Future, Sensors Update 2002, 10, 189-229.
    4. Gardner, J. W.; Bartlett, P. N., Sensors and Actuators B 1994, 18-19, 211-220.
    5. Pearce, T. C.; Gardner, J.W.; Göpel, W.; Baltes, H.; Hesse, J., Strategies for Mimicking Olfaction: The Next Gengeration of Electronic Noses?, Sensors Update 1996, 3, 61–130.
    6. 吳仁彰, 電子鼻技術簡介. 科儀新知, 2003, 24(5), 86-96.
    7. Keith J. Albert, Nathan S. Lewis, Caroline L. Schauer, Gregory A. Sotzing, Shannon E. Stitzel, Thomas P. Vaid, and David R. Walt, Cross-Reactive Chemical Sensor Arrays, Chem. Rev. 2000, 100, 2595-2626.
    8. Maekawa, T.; Suzuki, K.; Takada, T.; Kobayashi, T.; Egashira, M., Odor identification using a SnO2-based sensor array, Sensors and Actuators B 2001, 80, 51-58.
    9. Keith J. Albert, Nathan S. Lewis, Caroline L. Schauer, Gregory A. Sotzing, Shannon E. Stitzel, Thomas P. Vaid, and David R. Walt, Cross-Reactive Chemical Sensor Arrays, Chem. Rev. 2000, 100, 2595-2626.
    10. Juin J. Liou, F. Schwierz, RF MOSFET: Recent Advances, Current Status and Future Trends, Solid-State Electronics 2003, 47, 1881-1895.
    11. Q. Fang, D.G. Chetwynd, J.A. Covington, C.-S. Toh, J.W. Gardner, Micro-gas-sensor with Conducting Polymers, Sensors and Actuators B 2002, 84, 66-71.
    12. Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R., A chemical-detecting system based on a cross-reactive optical sensor array, Nature 1996, 382, 697-700.
    13. Neal A. Rakow & Kenneth S. Suslick, A Colorimetric Sensor Array for Odour Visualization, Nature 2000,410,710-713.
    14. Dickert, F. L.; Keppler, M., Adv. Mater. 1995, 7, 1020.
    15. Dickinson, T. A.; Michael, K. L.; Kauer, J. S.; Walt, D. R., Convergent, Self-Encoded Bead Sensor Arrays in the Design of an Artificial Nose, Anal. Chem. 1999, 71, 2192.
    16. Jay W.Grate, Acoustic Wave Microsensor Arrays for Vapor Sensing, Chem. Rev. 2000, 100, 2627-2648.
    17. Hung-Bin Lin, Jeng-Shong Shih., Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors, Sensors and Actuators B 2003, 92, 243-254.
    18. M. Penza, G. Cassano, Application of Principal Component Analysis and Artifical neural networks to recognize the individual VOCs of Methanol/2-Propanol in a Binary Mixture by SAW Multi-Sensor Array, Sensors and Actuators B 2003, 89, 269-284.
    19. Martin, S. J.; Frye, G. C.; Ricco, A. J., Effect of Surface Roughness on the Response of Thickness-Sensor Mode Resonators in Liquids, Anal. Chem. 1993, 65, 2910-2922.
    20. M. Schweyer, J. Hilton, J. Andel, A Novel Monolithic Piezoelectric Sensor, Ultrasonics Symposium Proceeding 1997, 1, 371-374.
    21. Junichi Ide, Takamichi Nakamoto, Toyosaka Moriizumi, Discrimination of Aromatic Optical Isomers Using Quartz-resonator sensors, Sensors and Actuators A 1995, 49, 73-78.
    22. Hierlemann, A., Schweizer-Berberich, M., Weimar, U., Kraus, G., Pfau, A., Göpel, W., Baltes, H., Göpel, W., Hesse, J. (eds.), Pattern Recognition and Multicomponent Analysis, Sensors Update 1996, 2, 119-180.
    23. Douglas A. Skoog, F. James Holler, Timothy A. Nieman, Principle of instrumental analysis 5th, 1998.
    24. 呂志誠, 人工嗅覺與電子鼻技術, 科儀新知, 2001, 22(6), 86-96.
    25. 林清山, 多變項分析統計法, 東華書局, 1995.
    26. 盧炳勳, 曹登發, 類神經網路理論與應用, 全華科技圖書, 1992.
    27. P. C. Jurs, G. A. Bakken, and H. E. McClelland, Computational Methods for the Analysis of Chemical Sensor Array Data form Volatile Analytes, Chem. Rev. 2000, 100, 2649-2678
    28. 莊麗貞, 中藥成分之定性與定量分析--訶子、黃柏、黃芩及微量元素. 國立台灣師範大學化學研究所博士論文, 2004.
    29. 陳耀茂, 多變解析方法與應用, 五南圖書, 1999.
    30. 黃俊英, 多變量分析, 翰蘆圖書 2000.
    31. Person, On Lines and Planes of Closet Fit of System of Points in Space, Philosophy Magazine, 1901, 6, 559-572.
    32. Hotelling, H., Analysis of a Complex of Statistical Variables into Principal Components, Journal of Educational Psychology 1933, 24, 417-441.
    33. Hotelling, H., Relations Between Two Sets of Variates, Biometrika, 1936, 28, 321-337.
    34. 何培基, SAS/PC入門與語言手冊, 松岡電腦圖書, 1988.
    35. 林傑斌、陳湘、劉明德, SPSS11統計分析實務設計寶典, 博碩文化, 2002.
    36. Alexey A. Tomchenko, Gregory P. Harmer, Brent T. Marquis, John W. Allen, Semiconducting Metal Oxide Sensor Array for the Selective Detection of Combuction Gases, Sensors and Actuators B 2003, 93, 126-134.
    37. Haykin, S., Neural Network:A Comprehensive Foundation, Macmillan College Publishing Company, USA , 1994.
    38. Neil A. Campbell, Jane B. Reece, Biology 6th, 2002.
    39. Kohonen, T., An Introduction to Computing with Neural Net, Neural Networks 1988, 1(1), 3-16.
    40. 胡玉城, 暢談類神經網路, 倚天資訊, 1992.
    41. 林昇甫, 洪成安, 神經網路入門與圖樣辨識, 全華科技, 1999.
    42. 郭益銘, 應用多變量統計與類神經網路分析雲林沿海地區地下水水質變化, 國立台灣大學農業工程研究所碩士論文, 1999.
    43. 葉怡成, 類神經網路模式應用與實作, 儒林出版社, 2000.
    44. Chang, P.; Shih, J. S., Multi-channel Piezoelectric Quartz Crystal Sensor for Organic Vapours. Ana. Chim. Acta., 2000, 403, 39-48.
    45. 孫建平, 類神經網路及其應用於降雨及逕流過程之研究, 國立台灣大學農業工程研究所碩士論文, 1995.
    46. Karnin, E. D., A Simple Procedure for Pruning Back- propagation Neural Network, IEEE Train. Neural Networks 1990, 1, 295-307.
    47. Chang, T. and Abdel-Ghaffer, K. A. S., A Universal Neural Net with Guaranteed Convergence to Zero System Error, IEEE Train. Signal Process. 1992, 40(12), 3022-3031.
    48. 張健邦, 多變量分析, 三民出版社, 1997.
    49. Lu, C.; Czanderna, C. A. W., Applications of Piezoelectric Quartz Crystal Microbalance. Elsevier Science. New York, 1984.
    50. 吳朗, 電子陶瓷-壓電, 全欣科技圖書, 1994.
    51. 吳朗, 感測與轉換原理、元件與應用, 全欣科技圖書, 1992.
    52. 彭成鑑, 壓電材料, 科儀新知, 1995, 16, 18-29.
    53. Buttry, D. A.; Ward, M. D., Measuerment of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance, Chem. Rev. 1992, 1355-1379.
    54. Ikeda, T., Fundamentals of Piezoelectricity. Oxford. Sci. Publ, 1990.
    55. Geddes, L. A.; Baker, L. E., Principle of Applied Biomedical Instrumentation. (3rd Ed.) John Wiley & Sons. New York. 1989, 163.
    56. Martin, S. J.; Frye, G. C.; Ricco, A. J., Effect of Surface Roughness on the Response of Thickness-shear Mode Resonators in Liquids, Anal. Chem. 1993, 65, 2910-2922.
    57. Levenson, L. L., Cimento, Suppl.2, Ser.1 1967, 5, 321.
    58. Deakin, M. R.; Byrd, H., Prussian Blue Coated Quartz Crystal Microbalance as a Detector for Electroinactive Cations in Aqueous Solution, Anal. Chem. 1989, 61, 290-295.
    59. Buttry, D. A.; Word, M. D., Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance, Chem. Rev. 1992, 92, 1355-1379.
    60. 紀培錦, 新電子科技雜誌, 1989, 17, 196-207.
    61. 湯進德, 微電子界面技術, 全華科技圖書, 1984.
    62. 袁帝文; 黃柏鈞, 數位邏輯設計與分析, 全欣科技圖書, 1992.
    63. 江宗達; 鍾健文編譯, IBM PC與感測器介面的探討, 全華科技圖書, 1994.
    64. Hlavay, J.; Guilbault, G. G., Applications of the Piezoelectric Crystal Detector in Analytical Chemistry, Anal. Chem. 1977, 49(13), 1890-1898.
    65. Sauerbrey, G. Z., Z. Phys. 1959, 155, 206.
    66. Grate, J. W.; Frye, G. C., Acoustic Wave Sensors, Sensors Update 1996 (2), 37-83.
    67. Shenheng Guan, Frequency Encoding of Resonant Mass Sensor for Chemical Vapor Detection, Anal. Chem. 2003, 75,4551-4557
    68. Mandelis and Christofides, Physics, Chemistry and Technology of Solid State Gas Sensor Devices, John Wiley & Sons. , New York, 1993.
    69. Shinar, R.; Liu, G.; Porter, M. D., Graphite Microparticles as Coatings for QuartzCrystal Microbalance-Based Gas Sensors, Anal. Chem. 2000, 72, 5981-5987
    70. Liang, C.; Yuan, Ching-Yao; Warmack, R. J.; Barnes, C. E.; Dai, S., Ionic Liquids: A New Class of Sensing Materialsfor Detection of Organic Vapors Based on the Useof a Quartz Crystal Microbalance, Anal. Chem., 2002
    71. Jarrett, M. R.; Finklea, Harry O., Detection of Nonpolar Vapors on Quartz Crystal Microbalances with Ni(SCN)2(4-picoline)4 Coatings, Anal. Chem., 1999, 71, 353-357
    72. Thompson, M.; Kipling, A. L.; Rajakovic, L. V., Thickness-shear-mode Acoustic Wave Sensors in the Liquid Phase:A Review, Analyst, 1991, 116, 881-890.
    73. Chang, P.; Shih, J. S., Application of Piezoelectric Ru(Ⅲ)/Cryptand Coated Quartz Crystal Gas Chromatographic Detector for Olefins, Anal. Chem. Acta., 1999, 380, 55-62.
    74. Barkó, G.; Hlavay, J., Application of an Artificial Neural Network (ANN) and Piezoelectric Chemical Sensor Array for Identification of Volatile Organic Compounds, Talanta, 1997, 44, 2237-2245.
    75. 于英民,孫全,莫瑋, 微電腦界面設計, 格致圖書, 1992.
    76. 行政院勞工委員會, 勞工作業環境空氣中有害物容許濃度標準.
    77. 游若琳, 碳六十/聚合物石英壓電晶體偵測器之研製與應用. 國立台灣師範大學化學研究所碩士論文, 1999.

    無法下載圖示
    QR CODE