簡易檢索 / 詳目顯示

研究生: 李佳燁
Lee, Tracy Jiaye
論文名稱: 臺灣野生酵母菌之族群遺傳基因體學
Population genomics of natural Saccharomyces yeast in Taiwan
指導教授: 蔡怡陞
Tsai, Isheng Jason
口試委員: 呂俊毅
Leu, Jun-Yi
丁照棣
Ting, Chau-Ti
李承叡
Lee, Cheng- Ruei
張筱涵
Chang, Hsiao-Han
蔡怡陞
Tsai, Isheng Jason
口試日期: 2022/04/29
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 138
英文關鍵詞: population genomics, Saccharomyces cerevisiae, microbial ecology, amplicon sequence
研究方法: 主題分析田野調查法
DOI URL: http://doi.org/10.6345/NTNU202200452
論文種類: 學術論文
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Population genetics is the study of genetic variations within and between groups of individuals. With a long history of domestication, the budding yeast Saccharomyces cerevisiae is a great model for population, ecology and evolutionary studies, given that more than a thousand isolates have been collected from a wide range including both artificial and natural niches. Previous studies pointed to East Asia as the geographical origin of the species, where highly genetically diverse wild populations were discovered. Among them, three isolates from Taiwan revealed unprecedented divergence to populations from the rest of the world. However, a lack of systemic survey and isolation in Taiwan limits our knowledge of the species’ distribution and diversity in nature. In the following chapters, I describe the fundamental ideas behind population genetic approach, strategies to sample broadly, and findings from the 121 isolates collected in Taiwan. Overall, S. cerevisiae is prevalent in diverse habitats in low abundance, contrary to their dominance in domesticated environments. Multiple coexisting and admixing natural lineages elevated the total genetic diversity within limited geographical range, comparable to that of continent level. These distinct lineages diverged from Chinese counterparts during the Pleistocene epoch when land bridges connected both regions. Polymorphism pattern within each lineage indicated that the diversity was shaped by differences in life history and selective pressure. These findings establish the budding yeast harbors rich diversities that provide insights into its natural history.
    Keywords: population genomics, Saccharomyces cerevisiae, microbial ecology, amplicon sequence

    CHAPTER 1. BACKGROUND 1 CHAPTER 2. SAMPLING OF NATURAL SACCHAROMYCES CEREVISIAE ISOLATES REVEALED DISTINCT LINEAGES 6  INTRODUCTION 6  MATERIALS AND METHODS 8  Sampling and metadata collection 8  Enrichment and species identification 11  DNA extraction for whole genome sequencing of individual isolate 12  DNA extraction from environmental samples 12  Library construction and whole-genome sequencing 14  Amplicon sequencing and analysis 15  Variant calling, filtering and phylogeny construction 16  Population structure estimation 19  Determining ploidy level of S. cerevisiae isolates 19  RESULTS 22  Isolation success rates 22  Repeated sampling 23  Community abundance 23  Phylogenetic relationship between Taiwanese isolates and the world 24  Shared and endemic Taiwanese lineages 26  Admixture among natural lineages 27  Presence of natural mosaics 28  Ploidy status of S. cerevisiae isolates 29  DISCUSSION 31  FIGURES AND TABLES 35 CHAPTER 3. POPULATION HISTORY OF NATURAL LINEAGES 51 INTRODUCTION 51  MATERIALS AND METHODS 53  TreeMix analyses for historical admixture events estimation 53  Assembly, annotation and ortholog identification 55  Divergence time estimate 55  RESULTS 58  Migration events between natural lineages 58  Timing of the most recent common ancestor among natural lineages 59  DISCUSSION 61  FIGURES AND TABLES 63 CHAPTER 4. FINE SCALE BIOGEOGRAPHY AND SELECTIVE FORCES SHAPING DIVERSITY 72  INTRODUCTION 72  MATERIALS AND METHODS 74  Genetic diversity and reproductive mode 74  Effects of selection in natural lineages 75  Relationship between genetic and geographic distance 75  RESULTS 77  Genetic and geographic distances 77  Diversity and divergence among natural populations 78  Frequency of sexual reproduction 80  Prevalent negative selection across lineages 81  DISCUSSION 85  FIGURES AND TABLES 88 CONCLUSION 117 REFERENCE 119 APPENDIX 137 1. LIST OF ENRICHMENT MEDIA 137 2. LINKS 138

    Alexander DH, Novembre J, Lange K. 2009. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome research 19: 1655-1664.
    Ali JR. 2018. Islands as biological substrates: Continental. Journal of Biogeography 45: 1003-1018.
    Almeida P, Barbosa R, Zalar P, Imanishi Y, Shimizu K, Turchetti B, Legras JL, Serra M, Dequin S, Couloux A et al. 2015. A population genomics insight into the Mediterranean origins of wine yeast domestication. In Molecular Ecology, doi:10.1111/mec.13341, pp. 5412-5427.
    Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB, Schatz MC. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology 20.
    Antonangelo ATBF, Alonso DP, Ribolla PEM, Colombi D. 2013. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains. In Yeast, Vol 30, pp. 307-317.
    Auton A, McVean G. 2007. Recombination rate estimation in the presence of hotspots. Genome research 17: 1219-1227.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al. 2012. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology 19: 455-477.
    Barbosa R, Almeida P, Safar SVB, Santos RO, Morais PB, Nielly-Thibault L, Leducq JB, Landry CR, Gonçalves P, Rosa CA et al. 2016. Evidence of natural hybridization in Brazilian wild lineages of Saccharomyces cerevisiae. In Genome Biology and Evolution, Vol 8, pp. 317-329.
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics (Oxford, England) doi:10.1093/bioinformatics/btu170: 1-7.
    Buser CC, Newcomb RD, Gaskett AC, Goddard MR. 2014. Niche construction initiates the evolution of mutualistic interactions. Ecology Letters 17: 1257-1264.
    Cavalieri D, McGovern PE, Hartl DL, Mortimer R, Polsinelli M. 2003. Evidence for S. cerevisiae Fermentation in Ancient Wine. Journal of Molecular Evolution 57: S226-S232.
    Chang C-H, Kaifu Y, Takai M, Kono RT, Grün R, Matsu’ura S, Kinsley L, Lin L-K. 2015a. The first archaic Homo from Taiwan. Nature Communications 6: 6037.
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015b. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4: 7.
    Charron G, Leducq J-B, Bertin C, Dubé AK, Landry CR. 2014. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. FEMS Yeast Research 14: 281-288.
    Chen Y, Siewers V, Nielsen J. 2012. Profiling of Cytosolic and Peroxisomal Acetyl-CoA Metabolism in Saccharomyces cerevisiae. PLOS ONE 7: e42475.
    Chiang T-Y, Schaal BA. 2006. Phylogeography of plants in Taiwan and the Ryukyu Archipelago. Taxon 55: 31-41.
    Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80-92.
    Clowers KJ, Will JL, Gasch AP. 2015. A unique ecological niche fosters hybridization of oak-tree and vineyard isolates of Saccharomyces cerevisiae. Molecular Ecology 24: 5886-5898.
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST et al. 2011. The variant call format and VCFtools. In Bioinformatics, Vol 27, pp. 2156-2158.
    Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM et al. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10.
    Davison J, Moora M, Öpik M, Ainsaar L, Ducousso M, Hiiesalu I, Jairus T, Johnson N, Jourand P, Kalamees R et al. 2018. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. The ISME Journal 12: 2211-2224.
    De Chiara M, Barré BP, Persson K, Irizar A, Vischioni C, Khaiwal S, Stenberg S, Amadi OC, Žun G, Doberšek K et al. 2022. Domestication reprogrammed the budding yeast life cycle. Nature Ecology & Evolution doi:10.1038/s41559-022-01671-9.
    Denis E, Denis E, Sanchez S, Mairey B, Beluche O, Cruaud C, Lemainque A, Wincker P, Barbe V. 2018. Extracting high molecular weight genomic DNA from Saccharomyces cerevisiae. Protocol Exchange doi:10.1038/protex.2018.076.
    Duan S-F, Han P-J, Wang Q-M, Liu W-Q, Shi J-Y, Li K, Zhang X-L, Bai F-Y. 2018. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. In Nature Communications, Vol 9, p. 2690.
    Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26: 2460-2461.
    Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 647: 1-5.
    Edgar RC. 2016a. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv doi:10.1101/074161.
    Edgar RC. 2016b. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv doi:10.1101/081257.
    Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16: 157.
    Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe. Genetics 201: 737-744.
    Fay JC, Benavides JA. 2005. Evidence for domesticated and wild populations of saccharomyces cerevisiae. In PLoS Genetics, Vol 1, pp. 66-71.
    Francesca N, Canale DE, Settanni L, Moschetti G. 2012. Dissemination of wine-related yeasts by migratory birds. Environmental Microbiology Reports 4: 105-112.
    Gallone B, Steensels J, Baele G, Maere S, Verstrepen KJ, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A et al. 2016. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. In Cell, Vol 166, pp. 1397-1410.e1316.
    Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv 1207: 3907.
    Goddard MR, Anfang N, Tang R, Gardner RC, Jun C. 2010. A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environmental Microbiology 12: 63-73.
    Goddard MR, Godfray HCJ, Burt A. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434: 636-640.
    Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Gonçalves P, Sampaio JP. 2016. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. In Current Biology, Vol 26, pp. 2750-2761.
    Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. 2004. “Sleeping Beauty”: Quiescence in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 68: 187-206.
    Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R. 2009. flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10: 106.
    Hamilton MB. 2021. Population Genetics, 2nd Edition. Wiley-Blackwell.
    Han D-Y, Han P-J, Rumbold K, Koricha AD, Duan S-F, Song L, Shi J-Y, Li K, Wang Q-M, Bai F-Y. 2021. Adaptive Gene Content and Allele Distribution Variations in the Wild and Domesticated Populations of Saccharomyces cerevisiae. Frontiers in Microbiology 12: 247.
    Hittinger CT, Steele JL, Ryder DS. 2018. Diverse yeasts for diverse fermented beverages and foods. Current Opinion in Biotechnology 49: 199-206.
    Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2017. UFBoot2: Improving the ultrafast bootstrap approximation. bioRxiv 35: 518-522.
    Huson DH, Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution 23: 254-267.
    Hyma KE, Fay JC. 2013. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. In Molecular Ecology, Vol 22, pp. 2917-2930.
    Jianfei Y, Zhiduan C, Bing L, Haining Q, Yong Y. 2013. Disjunct distribution of vascular plants between southwestern area and Taiwan area in China. Biodiversity Science 20: 482-494.
    Jiang X-L, Gardner EM, Meng H-H, Deng M, Xu G-B. 2019. Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Molecular Phylogenetics and Evolution 132: 36-45.
    Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4.
    Katoh K, Kuma K-i, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic acids research 33: 511-518.
    Kimura M. 1962. On the probability of fixation of mutant genes in a population. Genetics 47: 713-719.
    Knight SJ, Goddard MR. 2016. Sporulation in soil as an overwinter survival strategy in Saccharomyces cerevisiae. FEMS Yeast Research 16: fov102.
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27: 722-736.
    Kowallik V, Miller E, Greig D. 2015. The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Mol Ecol 24: 1596-1610.
    Kvitek DJ, Sherlock G. 2013. Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLOS Genetics 9: e1003972.
    Landry CR, Townsend JP, Hartl DL, Cavalieri D. 2006. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Molecular Ecology 15: 575-591.
    Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thevenin A, Stoye J, Hartmann RK, Prohaska SJ, Stadler PF. 2014. Orthology detection combining clustering and synteny for very large datasets. PLoS One 9: e105015.
    Leducq JB, Nielly-Thibault L, Charron G, Eberlein C, Verta JP, Samani P, Sylvester K, Hittinger CT, Bell G, Landry CR. 2016. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol 1: 15003.
    Lee SB, Taylor JW. 1990. Isolation of DNA from Fungal Mycelia and Single Spores. In PCR Protocols, doi:10.1016/b978-0-12-372180-8.50038-x, pp. 282-287.
    Legras J-l, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-duarte R et al. 2018. Adaptation of S . cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. doi:10.1093/molbev/msy066.
    Li G, Figueiró HV, Eizirik E, Murphy WJ. 2019. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Molecular Biology and Evolution 36: 2111-2126.
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.
    Lin HY, Li CF, Chen TY, Hsieh CF, Wang G, Wang T, Hu JM, Ohlemuller R. 2020. Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science 23: 239-253.
    Liti G, Barton DBH, Louis EJ. 2006. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174: 839-850.
    Liti G, Carter DM, Moses AM, Warringer J, Parts L, James Sa, Davey RP, Roberts IN, Burt A, Koufopanou V et al. 2009. Population genomics of domestic and wild yeasts. In Nature, Vol 458, pp. 337-341.
    Liti G, Warringer J, Blomberg A. 2017. Isolation and Laboratory Domestication of Natural Yeast Strains. Cold Spring Harbor Protocols 2017.
    Loecher M, Ropkins K. 2015. RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles. Journal of Statistical Software 63.
    Macías LG, Morard M, Toft C, Barrio E. 2019. Comparative Genomics Between Saccharomyces kudriavzevii and S. cerevisiae Applied to Identify Mechanisms Involved in Adaptation. Frontiers in Genetics 10.
    Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P. 2017. Quaternary disappearance of tree taxa from Southern Europe: Timing and trends. Quaternary Science Reviews 163: 23-55.
    Magwene PM, Kayıkçı Ö, Granek Ja, Reininga JM, Scholl Z, Murray D. 2011. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 108: 1987-1992.
    McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652-654.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20: 1297-1303.
    McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Michael D, Haeseler VA, Lanfear R. 2020. IQ-TREE 2 : New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. doi:10.1093/molbev/msaa015: 6-10.
    Mortimer R, Polsinelli M. 1999. On the origins of wine yeast. Research in Microbiology 150: 199-204.
    Muir A, Harrison E, Wheals A. 2011. A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces. FEMS Yeast Res 11: 552-563.
    Naseeb S, Alsammar H, Burgis T, Donaldson I, Knyazev N, Knight C, Delneri D. 2018. Whole Genome Sequencing, de Novo Assembly and Phenotypic Profiling for the New Budding Yeast Species Saccharomyces jurei. G3 Genes|Genomes|Genetics 8: 2967-2977.
    Naumov GI, Lee CF, Naumova ES. 2013. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. In Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, Vol 103, pp. 217-228.
    Nei M. 2005. Selectionism and Neutralism in Molecular Evolution. Molecular Biology and Evolution 22: 2318-2342.
    Nei M, Suzuki Y, Nozawa M. 2010. The Neutral Theory of Molecular Evolution in the Genomic Era. Annual Review of Genomics and Human Genetics 11: 265-289.
    Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glockner FO, Tedersoo L et al. 2018. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res doi:10.1093/nar/gky1022.
    Niu Y-T, Ye J-F, Zhang J-L, Wan J-Z, Yang T, Wei X-X, Lu L-M, Li J-H, Chen Z-D. 2018. Long-distance dispersal or postglacial contraction? Insights into disjunction between Himalaya-Hengduan Mountains and Taiwan in a cold-adapted herbaceous genus,Triplostegia. Ecology and Evolution 8: 1131-1146.
    Ohta T. 1992. The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and Systematics 23: 263-286.
    Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergstrom A, Sigwalt A, Barré B, Freel K, Llored A et al. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. In Nature (accepted), doi:10.1038/s41586-018-0030-5.
    Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R.
    Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8: e1002967.
    Pontes A, Čadež N, Gonçalves P, Sampaio JP. 2019a. A Quasi-Domesticate Relic Hybrid Population of Saccharomyces cerevisiae × S. Paradoxus Adapted to Olive Brine. Frontiers in Genetics 10.
    Pontes A, Čadež N, Gonçalves P, Sampaio JP. 2019b. A Quasi-Domesticate Relic Hybrid Population of Saccharomyces cerevisiae × S. Paradoxus Adapted to Olive Brine. In Frontiers in Genetics, Vol 10. Frontiers Media S.A.
    Qian W, Ma D, Xiao C, Wang Z, Zhang J. 2012. The Genomic Landscape and Evolutionary Resolution of Antagonistic Pleiotropy in Yeast. Cell Reports 2: 1399-1410.
    Rannala B, Yang Z. 2007. Inferring Speciation Times under an Episodic Molecular Clock. Systematic Biology 56: 453-466.
    Reuter M, Bell G, Greig D. 2007. Increased outbreeding in yeast in response to dispersal by an insect vector. Current Biology 17: R81-R83.
    Robinson HA, Pinharanda A, Bensasson D. 2016. Summer temperature can predict the distribution of wild yeast populations. In Ecology and Evolution, Vol 6, pp. 1236-1250.
    Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L. 2006. Population genomic analysis of outcrossing and recombination in yeast. Nature Genetics 38: 1077-1081.
    Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E. 2011. Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces. Applied and Environmental Microbiology 77: 2292-2302.
    Sare AR, Stouvenakers G, Eck M, Lampens A, Goormachtig S, Jijakli MH, Massart S. 2020. Standardization of Plant Microbiome Studies: Which Proportion of the Microbiota is Really Harvested? Microorganisms 8.
    Schierup MH, Hein J. 2000. Consequences of Recombination on Traditional Phylogenetic Analysis. Genetics 156: 879-891.
    Seersholm FV, Werndly DJ, Grealy A, Johnson T, Keenan Early EM, Lundelius EL, Winsborough B, Farr GE, Toomey R, Hansen AJ et al. 2020. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nature Communications 11.
    Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT et al. 2018. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 175: 1533-1545.e1520.
    Shumate A, Salzberg SL, Valencia A. 2021. Liftoff: accurate mapping of gene annotations. Bioinformatics 37: 1639-1643.
    Sniegowski PD, Dombrowski PG, Fingerman E. 2002. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. In FEMS Yeast Research, Vol 1, pp. 299-306.
    Stanke M, Tzvetkova A, Morgenstern B. 2006. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome biology 7 Suppl 1: S11.11-18.
    Stefanini I, Dapporto L, Berná L, Polsinelli M, Turillazzi S, Cavalieri D. 2016. Social wasps are a <i>Saccharomyces</i> mating nest. In Proceedings of the National Academy of Sciences, Vol 113, pp. 2247-2251.
    Stefanini I, Dapporto L, Legras J-l, Calabretta A, Di M. 2012. Role of social wasps in Saccharomyces cerevisiae ecology and evolution. doi:10.1073/pnas.1208362109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1208362109.
    Stoletzki N, Eyre-Walker A. 2010. Estimation of the Neutrality Index. Molecular Biology and Evolution 28: 63-70.
    Strope PK, Skelly Da, Kozmin SG, Mahadevan G, Stone Ea, Magwene PM, Dietrich FS, Mccusker JH, Carolina N, Sciences B et al. 2015. The 100-genomes strains , an S . cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. doi:10.1101/gr.185538.114., pp. 1-13.
    Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34: W609-612.
    Tattini L, Tellini N, Mozzachiodi S, D’Angiolo M, Loeillet S, Nicolas A, Liti G. 2019. Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Molecular Biology and Evolution 36: 2861-2877.
    Taylor MW, Tsai P, Anfang N, Ross HA, Goddard MR. 2014. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environmental Microbiology 16: 2848-2858.
    Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10: 1-43.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A et al. 2014. Global diversity and geography of soil fungi. Science 346.
    Todd RT, Braverman AL, Selmecki A. 2018. Flow Cytometry Analysis of Fungal Ploidy. Current Protocols in Microbiology 50: 1-20.
    Tsai IJ, Bensasson D, Burt A, Koufopanou V. 2008a. Population genomics of the wild yeast &lt;em&gt;Saccharomyces paradoxus&lt;/em&gt;: Quantifying the life cycle. Proceedings of the National Academy of Sciences 105: 4957.
    Tsai IJ, Bensasson D, Burt A, Koufopanou V. 2008b. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proceedings of the National Academy of Sciences of the United States of America 105: 4957-4962.
    Tsukada M. 1966. Late Pleistocene Vegetation and Climate in Taiwan (Formosa). Proceedings of the National Academy of Sciences 55: 543-548.
    Van P, Jiang W, Gottardo R, Finak G. 2018. ggCyto: next generation open-source visualization software for cytometry. Bioinformatics 34: 3951-3953.
    Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27: 737-746.
    Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F et al. 2020. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7: 228.
    Vilella AJ, Blanco-Garcia A, Hutter S, Rozas J. 2005. VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics 21: 2791-2793.
    Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21: 295-305.
    Wang QM, Liu WQ, Liti G, Wang SA, Bai FY. 2012. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. In Molecular Ecology, Vol 21, pp. 5404-5417.
    Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F. 2011. Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency. PLOS Genetics 7: e1002202.
    Xia W, Nielly-Thibault L, Charron G, Landry CR, Kasimer D, Anderson JB, Kohn LM. 2017. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Molecular Ecology 26: 995-1007.
    Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586-1591.
    Yoder AD, Yang Z. 2000. Estimation of Primate Speciation Dates Using Local Molecular Clocks. Molecular Biology and Evolution 17: 1081-1090.
    Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19.
    Zhu YO, Sherlock G, Petrov DA. 2016. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation. G3 (Bethesda) 6: 2421-2434.

    下載圖示
    QR CODE