研究生: |
陳襄銘 Hsiang-Ming Chen |
---|---|
論文名稱: |
脊髓小腦運動失調症:SCA2、SCA14的遺傳檢測及擴增SCA17 TBP蛋白與HMGB1蛋白的交互作用分析 Spinocerebellar ataxias: Genetic testing of SCA2、SCA14 and interaction analysis between expanded SCA17 TBP and HMGB1 |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 脊髓小腦運動失調症 、石英晶體微量天平 |
英文關鍵詞: | SCA, SCA2, SCA14, SCA17, QCM |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦運動失調症(Spinocerebellar ataxia;簡稱SCA),為一種異質性的神經退化性疾病,大部分起因為特定基因上三核苷重複擴增的結果,患者在小腦、腦幹、脊髓以及週邊神經系統會出現漸進式的退化現象。現在已知的脊髓小腦運動失調症約有28種亞型,本研究第一部份將重點放在屬於三核苷重複擴增的第二型(SCA2)以及不屬於三核苷重複擴增的第十四型(SCA14)的遺傳分析。這兩型的致病原因分別為Ataxin-2基因的CAG三核苷重複擴增和protein kinase Cγ (PRKCG)基因的突變。首先會對長庚醫院神經內科所提供的正常人(179位)、運動失調症(ataxia)患者(15位)、帕金森氏症(Parkinson's disease)患者(137位)、失智症(dementia)患者(124位)、震顫(tremor)患者(84位)及其他神經疾病患者(舞蹈症、肌張力異常症等,41位)進行SCA2 CAG三核苷重複擴增的分子檢測,結果並未發現任何Ataxin-2 CAG重複擴增的等位基因。在SCA14的遺傳分析方面,利用PCR增幅及DNA定序,檢視了30位帕金森氏症徵候群(Parkinsonism)患者PRKCG基因最常被報導發生突變的表現子(exon) 4及5,結果亦未發現任何突變。本研究的第二部份著重在分析SCA17 TBP蛋白與HMGB1蛋白的交互作用。首先製備包含20、45、61個麩醯胺的N端TBP (nTBP-Q20/Q45/Q61)及全長TBP (fTBP-Q20/Q45/Q61)的GST融合蛋白,再利用石英晶體微量天平(Quartz Crystal Microbalance)來量測TBP重複擴增對其與HMG1分子間交互作用的影響,結果發現N端TBP或全長TBP與HMG1之間的交互作用相同,但不同polyQ長度之TBP蛋白與HMG1之間的交互作用不同,其中以nTBP-Q45的結合力最強(ΔHz = 13.0),nTBP-Q61的結合力最弱(ΔHz = 4.3)。故推測HMGB1可能和TBP的polyQ部位結合。
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders characterized by cerebellar dysfunction alone or in combination with other neurological abnormalities. More than 28 SCA types have been described. Among them, SCA2 and SCA17 were caused by the expansions of coded CAG trinucleotide repeats and SCA14 cause by mutations in the protein kinase Cγ. We examined the CAG repeat range of SCA2 Ataxin-2 gene in 179 normal controls and in patients with various neurodegenerative diseases, including 15 ataxia, 137 Parkinson's disease, 124 dementia, 84 essential tremor, and 41 chorea and dystonia. No SCA2 expanded allele was found. In the screening of SCA14 PRKCG gene mutation, we sequenced the exons 4 and 5-containing DNA fragment from 30 patients with parkinsonism and again no mutation was found. To study the protein-protein interaction between HMGB1 and TBP, GST fused HMGB1, nTBP-Q20/Q45/Q61 (N-terminal TBP) and fTBP-Q20/Q45/Q61 (full-length TBP) were overexpressed in E. coli BL21 cells and purified by affinity chromatography. Quartz Crystal Microbalance (QCM) was used to study the interactions between HMGB1 and TBP protein carrying 20, 45 or 61 polyQ track. While the interaction between HMGB1 and full-length or N-terminal TBP was similar, the length of polyQ track affects the binding of HMGB1 to TBP, with strongest binding of nTBP-Q45 (ΔHz = 13.0) and weakest binding of nTBP-Q61 (ΔHz = 4.3).
陳玢璘. 第二及十七型脊髓小腦共濟失調症之分子檢測及SCA17 TBP擴增淋巴細胞的氧化壓力研究. 國立台灣師範大學生命科學系九十四學年度碩士論文. 2006.
Babovic-Vuksanovic D, Snow K, Patterson M, et al. Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet 1998;79:383-387.
Barton S, Jacak R, Khare SD, et al. The length dependence of the polyQ-mediated protein aggregation. J Biol Chem 2007; [Epub ahead of print].
Brkanac Z, Bylenok L, Fernandez M, et al. A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 2002;59:1291-1295.
Brusco A, Gellera C, Cagnoli C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 2004;61:727-733.
Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006;129:235-242.
Chakrabarti S, Regec A, Gintzler AR. Chronic morphine acts via a protein kinase Cγ-Gβ-adenylyl cyclase complex to augment phosphorylation of Gβ and Gβγ stimulatory adenylyl cyclase signaling. Brain Res Mol Brain Res 2005;138:94-103.
Charles P, Camuzat A, Benammar N, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 2007 Jun 13; [Epub ahead of print].
Chen DH, Brkanac Z, Verlinde CL, et al. Missense mutations in the regulatory domain of PKCγ: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 2003;72:839-849.
Chen DH, Cimino PJ, Ranum LP, et al. The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 2005;64:1258-1260.
Chen CM, Lane HY, Wu YR, et al. Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 2005;78:131-136.
Codazzi F, Di Cesare A, Chiulli N, et al. Synergistic control of protein kinase Cgamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J Neurosci 2006;26:3404-3411.
Craig NJ, Duran Alonso MB, Hawker KL, et al. A candidate gene for human neurodegenerative disorders: a rat PKC gamma mutation causes a Parkinsonian syndrome. Nat Neurosci 2001;4:1061-1062.
Craig K, Keers SM, Archibald K, et al. Molecular epidemiology of spinocerebellar ataxia type 6. Ann Neurol 2004;55:752-755.
Cui XS, Shen XH, Kim NH. High mobility group box 1 (HMGB1) is implicated in preimplantation embryo development in the mouse. Mol Reprod Dev. 2007 Feb 8; [Epub ahead of print].
Dalski A, Mitulla B, Burk K, et al. Mutation of the highly conserved cysteine residue 131 of the SCA14 associated PRKCG gene in a family with slow progressive cerebellar ataxia. J Neurol 2006 [Epub ahead of print].
David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997;17:65-70.
De Michele G, Maltecca F, Carella M, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci 2003;24:166-167.
Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006;129:1357-1370.
Durr A, Brice A, Lepage-Lezin A, et al. Autosomal dominant cerebellar ataxia type I linked to chromosome 12q (SCA2: spinocerebellar ataxia type 2). Clin Neurosci 1995;3:12-16.
El Mezayen R, El Gazzar M, Seeds MC, et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin . Immunol Lett 2007 May 25; [Epub ahead of print].
Furusawa H, Kitamura Y, Hagiwara N, et al. Binding kinetics of the toroid-shaped PCNA to DNA strands on a 27 MHz quartz crystal microbalance. Chemphyschem 2002;3:446-448.
Fujigasaki H, Martin JJ, De Deyn PP, et al. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 2001;124:1939-1947.
Giunti P, Sabbadini G, Sweeney MG, et al. The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain 1998;121:459-467.
Gispert S, Twells R, Orozco G, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nature Genet 1993;4:295-299.
Harding AE. Clinical features and classification of inherited ataxias. In: Harding AE, Deufel T, editors. Inherited ataxias. Vol 61. New York: Raven; 1993. p. 1-14.
Hardman CH, Broadhurst RW, Raine AR, et al. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 1995;34:16596-16607.
Hernandez D, Hanson M, Singleton A, et al. Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord 2003;9:317-320.
Hsieh M, Li SY, Tsai CJ, et al. Identification of five spinocerebellar ataxia type 2 pedigrees in patients with autosomal dominant cerebellar ataxia in Taiwan. Acta Neurol Scand 1999;100:189-194.
Holmes SE, O’Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 50 region of PPP2R2B is associated with SCA12. Nat Genet 1999;23:391-392.
Kao CC, Lieberman PM, Schmidt MC, et al. Cloning of a transcriptionally active human TATA binding factor. Science 1990;248:1646-1650.
Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994;8:221-228.
Khare SD, Ding F, Gwanmesia KN, et al. Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput Biol 2005;1:230-235.
Klebe S, Durr A, Rentschler A, et al. New mutations in protein kinase Cγassociated with spinocerebellar ataxia type 14. Ann Neurol 2005;58:720-729.
Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6:9-13.
Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999;8:2047-2053.
Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21:379-384.
Lee WY, Jin DK, Oh MR, et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol 2003;60:858-863.
Leggo J, Dalton A, Morrison PJ, et al. Analysis of spinocerebellar ataxia types 1, 2, 3, and 6, dentatorubral-pallidoluysian atrophy, and Friedreich's ataxia genes in spinocerebellar ataxia patients in the UK. J Med Genet 1997;34:982-985.
Lin D, Zhou J, Zelenka PS, et al. Protein kinase Cγ regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci 2003;44:5259-5268.
Lin D, Lobell S, Jewell A, et al. Differential phosphorylation of connexin46 and connexin50 by H2O2 activation of protein kinase Cγ. Mol Vis 2004;10:688-695.
Lin D, Takemoto DJ. Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J Biol Chem 2005;280:13682-13693.
Lin IS, Wu RM, Lee-Chen GJ, et al. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 2007a;13: 246-249.
Lin CH, Hwu WL, Chiang SC, et al. Lack of mutations in spinocerebellar ataxia type 2 and 3 genes in a Taiwanese (ethnic Chinese) cohort of familial and early-onset parkinsonism. Am J Med Genet B Neuropsychiatr Genet 2007b;144:434-438.
Lim SW, Zhao Y, Chua E, et al. Genetic analysis of SCA2, 3 and 17 in idiopathic Parkinson's disease. Neurosci Lett 2006;403:11-4.
Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996;14:285-291.
Ivanov S, Dragoi AM, Wang X , et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 2007 Jun 4; [Epub ahead of print].
Maltecca F, Filla A, Castaldo I, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology 2003;61:1441-1443.
Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000;26:191-194.
Modoni A, Contarino MF, Bentivoglio AR, et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord 2007;22:324-327.
Momeni P, Lu CS, Chou YH, et al. Taiwanese cases of SCA2 are derived from a single founder. Mov Disord 2005;20:1633-1636.
Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001;10:1441-1448.
Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal Chem 1998;70:1288-1296.
Okahata Y, Kitamura Y, Hagiwara N, et al. Quantitative detection of binding of PCNA protein to DNA strands on a 27 MHz quartz-crystal microbalance. Nucleic Acids Symp Ser 2000;44:243-244.
Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type I. Nat Genet 1993;4:211-226.
Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269-276.
Read CM, Cary PD, Crane-Robinson C, et al. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 1995;34:16596-16607.
Reid SJ, Rees MI, van Roon-Mom WM, et al. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 2003;13:37-45.
Rolfs A, Koeppen AH, Bauer I, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 2003;54:367-375.
Rufa A, Dotti MT, Galli L, et al. Spinocerebellar ataxia type 2 (SCA2) associated with retinal pigmentary degeneration. Eur Neurol 2002;47:128-129.
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989, New York.
Sanpei K, Takano H, Igarashi S, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996;14:277-284.
Sasaki H, Fukazawa T, Wakisaka A, et al. Central phenotype and related varieties of spinocerebellar ataxia 2 (SCA2): a clinical and genetic study with a pedigree in the Japanese. J Neurol Sci 1996;144:176-181.
Sasaki H, Yabe I, Yamashita I, et al. Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci 2000;175:45-51.
Seki T, Adachi N, Ono Y, et al. Mutant protein kinase Cgamma found in spinocerebellar ataxia type 14 is susceptible to aggregation and causes cell death. J Biol Chem 2005;280:29096-29106.
Silveira I, Miranda C, Guimaraes L, et al. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 2002;59:623-629.
Stevanin G, Fujigasaki H, Lebre AS, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003;126:1599-1603.
Stevanin G, Hahn V, Lohmann E, et al. Mutation in the catalytic domain of protein kinase Cγ and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 2004;61:1242-1248.
Stros M, Ozaki T, Bacikova A, et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem 2002;277:7157-7164.
Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986;189:113-130.
Sutrias-Grau M, Bianchi ME, Bernués J, et al. High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. J Biol Chem 1999;274:1628-1634.
Tang B, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 2000;57:540-544.
Tsai HF, Liu CS, Leu TM, et al. Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand 2004;109:355-360.
van de Warrenburg B, Sinke R, Verschuuren-Bemelmans C, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurol 2002;58:702-708.
van de Warrenburg BP, Verbeek DS, Piersma SJ, et al. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 2003;61:1760-1765.
Verbeek DS, Knight MA, Harmison GG, et al. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting. Brain 2005a;128:436-442.
Verbeek DS, Warrenburg BP, Hennekam FA, et al. Gly118Asp is a SCA14 founder mutation in the Dutch ataxia population Hum Genet 2005b;117:88-91.
Watanabe A, Furusawa H, Okahata Y. In situ monitoring of peptide-bound dsDNA selection on a GCN4-bZIP-immobilized quartz-crystal microbalance. Nucleic Acids Symp Ser 1999;42:193-194.
Weir HM, Kraulis PJ, Hill CS, et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J 1993;12:1311-1319.
Wu YR, Lin HY, Chen CM, et al. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet 2004;65:209-214.
Wu YR, Fung HC, Lee-Chen GJ, et al. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 2005;112:539-546.
Yabe I, Sasaki H, Chen DH, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 2003;60:1749-1751.
Yamashita I, Sasaki H, Yabe I, et al. A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 2000;48:156-163.
Yoon S, Lee JY, Yoon BK, et al. Effects of HMGB-1 overexpression on cell-cycle progression in MCF-7 cells. J Korean Med Sci 2004;19:321-326.
Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the 1A-voltage-dependent calcium channel. Nat Genet 1997;15:62-69.
Zoghbi HY. Spinocerebellar ataxias. Neurobiol Dis 2000;7:523-527.
Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 2000;23:217-247.
Zuhlke C, Hellenbroich Y, Dalski A, et al. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 2001;9:160-164.
Zuhlke C, Gehlken U, Hellenbroich Y, et al. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol 2003;250:161-163.