簡易檢索 / 詳目顯示

研究生: 林柔安
Lin, Jo-An
論文名稱: 高中職學生生活能源之科學、科技、工程素養之研究
A Comparative Study on Students’ Living Energy Literacy of Science, Technology and Engineering between General High and Vocational-Technical School Students
指導教授: 洪榮昭
Hong, Jon-Chao
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 140
中文關鍵詞: 生活能源STE素養自我導向學習動手做態度
英文關鍵詞: Living energy literacy, Self-directed learning, Hands-on attitude
DOI URL: http://doi.org/10.6345/NTNU202000763
論文種類: 學術論文
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日常生活中的資源所提供的環境被視為是教師用來教導學生問題學習和提供主題的中介手段,即在情境化教學方法裡,可以利用學生日常生活之經驗來引導STEM課程的教授。為了瞭解學生日常生活中的學習概念之意識形態,本研究探討高中職學生之生活能源科學、科技、工程素養(簡稱生活能源STE素養),在不同的背景變項上是否有差異性,以及學生之自我導向學習、動手做態度對於其生活能源STE素養是否具有影響。
    本研究採用測驗試題與問卷調查法,涵蓋生活能源STE素養之單選題構面,以及自我導向學習、動手做態度之五點量表構面。主要研究對象為臺灣北部之高中職學生,共有479位參與者,經刪除無效問卷後共有408份有效問卷作為資料分析之依據。
    1. 在差異性分析中經由單因子相依變異數分析發現學生於生活能源STE素養之間表現具有差異性,其中在科技素養表現最佳、其次是科學素養,最後則是工程素養。
    2. 透過獨立樣本t檢定中發現學生生活能源STE素養表現男性學生優於女性學生;高中學生優於高職學生。
    3. 透過單因子獨立變異數分析發現學生在生活能源STE素養表現,三年級與一年級學生優於二年級學生;自然組學生優於社會組與其他類別。
    4. 在相關性分析中透過回歸分析發現學生之自我導向學習與動手做態度會對其生活能源STE素養表現具有正相關性。因此學生之自我導向學習與動手做態度越好其生活能源STE素養的表現也會越好。

    Resources from everyday practices can be viewed as mediational means teachers can use in order to provide support for students learning about issues and themes. That is, in contextualizing instructional method, teachers can focus on using students' everyday experiences as materials for teaching STEM subject matter at school. To support the ideology of learning concept from daily life, the present study focused on the living energy literacy of science, technology, and engineering which abbreviation as living energy STE literacy.
    Moreover, to compare the difference in living energy STE literacy between general high school and vocational school students, this study designed a quiz to explore the difference in living energy STE literacy between two types of high school students in STE literacy. This research employed a questionnaire survey method, covering self-directed learning and hands-on attitude to explore their correlates to living energy STE literacy. Totaling 479 participants from general high and vocational high school student in northern Taiwan. There were 408 useful samples in the study.
    1. By using RM-ANOVA statistical method to compare the difference between the living energy STE literacy, the present study found that in the living energy STE literacy, Students performed the best in technology literacy, second is science literacy and the last is engineering literacy.
    2. By using t-test statistical method to compare the difference in gender and school attributes, the present study found that in the living energy STE literacy male students performed better than female students, and high school students performed better than vocational students.
    3. By using ANOVA statistical method to compare the difference in grades and groups, the present study found that in the living energy STE literacy, senior and freshman performed better than sophomore, and science & engineering major students performed better than social sciences major and others.
    4. In addition to differential study, the present study also conducted the relationship between students’ hands-on attitude and STE, and self-directed learning and STE. The results revealed that self-directed learning and hands-on attitude are positively related to living energy STE literacy; indicating the higher level of hands-on attitude students had, the high level of science, technology, and engineering related to living energy knowledge they would have.

    謝誌 i 摘要 ii Abstract iii 目次 v 表次 vii 圖次 x 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 研究範圍與限制 7 第四節 名詞解釋 9 第二章 文獻探討 11 第一節 我國能源現況與政策發展 11 第二節 素養導向課程 17 第三節 能源素養與教育 20 第四節 STEM素養與教育 27 第五節 自我導向學習 33 第六節 動手做態度 38 第三章 研究設計與實施 43 第一節 研究流程 43 第二節 研究架構與假設 45 第三節 研究對象 49 第四節 研究工具 49 第五節 資料處理與統計分析 52 第六節 研究倫理 53 第四章 資料處理與分析 55 第一節 項目分析 55 第二節 信效度分析 66 第三節 描述性統計分析 71 第四節 差異性統計分析 73 第五節 相關性分析 97 第六節 研究結果 100 第五章 研究結論與建議 107 第一節 研究結論 107 第二節 研究貢獻 110 第三節 研究建議 111 參考文獻 113 附錄 生活能源STE素養調查問卷 137

    中文部分
    王文科、王智弘(2012)。教育研究法(增訂第十五版)。臺北市:五南。
    王光復(2011)。如何妥善做好專題製作及動手做之教學。生活科技教育月刊,44(3),23-49。
    王秀紋、王勝輝、白子易、鍾任琴、張瑞村(2008,10月)。影響推動國小能源教育要素之探討。「2008臺灣環境資源永續發展研討會」發表之論文,臺灣環境資源永續發展協會。
    王俊明(1999)。問卷與量表的編製及分析方法。載於張至滿、王俊明(主編),體育測驗與評價(139-158頁)。臺北市:中華民國體育學會。
    王政彥、(2018)。病患親屬健康識能的自我導向學習-以一個腹膜透析患者家庭為例。高雄師大學報,45,1-33。
    平子航(2019)。以科技接受模式探討技術型高級中等學校學生使用數位學習平台之行為意圖:以自我導向學習為調節變項(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    田振榮(1992)。能源教育的檢討與評析。工業職業教育,10(3),31-34。
    石宇立(2007)。我國高中職學生學習動機之後設分析研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    朱耀明(2011)。「動手做」的學習意涵分析—杜威的經驗學習觀點。生活科技教育月刊,44(2),32-43。
    江文鉅(2009)。科技與工程教育的結合。生活科技教育月刊,42(6),1-2。
    余雅萍(2003)。學童版中式飲食頻率問卷之發展研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    吳木崑(2009)。杜威經驗哲學對課程與教學之啟示。臺北市立教育大學學報,40(1),35-54。
    吳明隆(2009)。SPSS操作與應用:問卷統計分析實務。臺北市:五南。
    吳書寯(2017)。應用擴增實境工具輔助國中學生學習空間幾何(未出版之未出版之碩士論文)。國立臺灣師範大學,臺北市。
    吳鳳玉(2008)。基隆市某國中七年級學生健康與體育學習領域「自我導向學習策略」之效果研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    吳璧純(2017)。素養導向教學之學習評量。臺灣教育評論月刊,6(3),30-34。
    李志原、曾淑惠(2019)。技術型高中實習科目素養導向教學設計之研議。教育脈動,18,1-10。
    李咏吟、單文經(1997)。教學原理。臺北市:遠流。
    李怡穎、陳中慧(2016)。強化實習實作扭轉趨向學術化之高職學校教學。臺灣教育評論月刊,4(11),71-74。
    李隆盛、李懿芳、潘瑛如(2015)。「國中生能源素養量表」之編製及信效度分析。科學教育學刊,23(4),375-395。
    李賢哲、陳皇州、陳存仁、林曉雯、李文仁、許華書、賴岦俊(2016)。動手做科學教育中心之設計與實踐。科學教育月刊,391,40-51。
    阮孝齊(2018)。原住民族國中學生學習態度及學校歸屬感影響因素之探究。臺灣原住民研究論叢,24,93-124。
    周芬美、段曉林(2019)。以自我效能激發策略融STEM統整活動對國中學生STEM學習效能之探討。科技與人力教育季刊,5(4),26-49。
    周雨田、彭信坤、張靜貞、蔡文禎、殷壽鏞(2017)。臺灣經濟最近情勢。臺灣經濟預測與政策,47(2),153-178。
    林全能(2015)。我國能源情勢與能源政策之發展。臺北市:經濟部能源局。
    林坤誼(2014)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1-71。
    林建甫(2018年8月21日)。人工智慧教育該向高中扎根。中國時報。取自https://www.chinatimes.com/?chdtv
    林榮賢(2004)。我國高職特教班教師能源認知與能源態度之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    邱育佳、林燕卿(2019)。高雄地區青少年性教育創新科技接受程度初探。性學研究,10(1),29-52。
    邱瑞焜(2017)。新時代的能源教育,師友月刊,602,91-96。
    洪詠善、范信賢(主編)(2015)。同行~走進十二年國民基本教育課程綱要總綱。新北市:國家教育研究院。
    洪榮昭(2001)。知識創新與學習型組織。臺北市:五南。
    范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用(未出版之博士論文)。國立臺灣師範大學,臺北市。
    范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
    范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55,71-102。
    范麗玉(1998)。國中物理建構式教學策略之行動研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
    徐昊杲、施秀青(2014)。國民中小學能源教育之推動經驗與成果。技術及職業教育學報,5(3),99-128。
    袁磊、趙玉婷(2017)。小學女生在STEM教育中的學習差異及對策研究。中國電化教育,6,73-79。
    國家教育研究院(2008)。普通高級中學必修科目「生活科技」課程綱要。取自:https://www.naer.edu.tw/files/15-1000-2979,c551-1.php
    國家教育研究院(2014)。十二年國民基本教育課程發展指引。取自https://www.naer.edu.tw/files/15-1000-5622,c952-1.php
    國家教育研究院(2014)。十二年國民基本教育課程綱要總綱。取自https://www.naer.edu.tw/files/15-1000-14113,c1594-1.php
    國家發展委員會(2020)。智慧電網總體規劃方案。臺北市:經濟部。
    國教署(2018年3月10日)。核心素養改變一:教學走向素養導向教學的兩條路徑。國教課綱向前行電子報。取自http://newsletter.edu.tw
    國際能源署(2019)。國際能源署:五年後再生能源可望追上燃煤發電並列主要供電來源。臺北市:環境資訊中心。
    張育禎(2008)。國中生之經驗學習歷程與科技問題解決能力之關係(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    張春興(2000)。現代心理學。臺北市:東華書局。
    張美珍、王裕宏、錢文國、陳育新(2017)。科學探索箱活動對偏鄉學童科學態度與概念知識表現之影響。工業科技教育學刊,10,61-77。
    張嘉玲、陳明義(2009)。綠色產業發展趨勢。科學與工程技術期刊,5(1),11-17。
    張瀞文(主編)(2018)。面向未來的能力:素養導向教學教戰手冊。臺北市:教育部。
    教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:作者。
    教育部(2018)。十二年國民基本教育課程綱要,高中職暨普通型高級中等學校科技領域。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/52/pta_18529_8438379_60115.pdf
    教育部(2018)。面向未來的能力:素養導向教學教戰手冊。臺北市:作者。
    莊濬豪(2019)。橢圓概念教學影片不同的呈現方式對學生的學習成效與認知負荷感受之影響研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    許文馨(2011)。能源與非能源學校國中生能源素養之研究(未出版之碩士論文)。東海大學,臺中市。
    許佩玲(2006)。高中職生在技術學院第一年學業成績的探討。東亞學報,26,213-224。
    郭世育(2002)。高職特殊教育班教師教學困擾之研究。(未出版之碩士論文)。國立臺北科技大學,臺北市。
    郭生玉(1989﹚。心理與教育測驗。臺北市,精華書局。
    郭佩容(2013)。檢視高中學生科技學習態度、知識信念與學業成就之關係(未出版之碩士論文)。國立中央大學,桃園市。
    郭家良(2014)。STEM課程統整模式運用於國中生活科技教學對學生學習成效影響之行動研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳立庭(2017)。生活科技課程實作材料替代使用之適切性研究—以「以瓦楞紙板取代纖維板」為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳采秀(2019)。自我導向學習與數位學習準備度內涵之探究。明道學術論壇,11(1),43-53。
    陳冠利、劉湘瑤、陳柏熹、黃書涵(2015)。以情境式試題評量中學生能源素養。教育科學研究期刊,60(2),167-196。
    陳建州、林彥泯(2008)。能源政策與能源教育的緣起。嶺東通識教育研究學刊,3(2),1-12。
    陳昱潔(2013)。高中職生解釋風格、認知調節策略、自我監控覺察與憂鬱及生活滿意度之關聯(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳英豪、吳裕益(2003)。測驗與評量。高雄市:復文。
    陳新豐(2016)。國小高年級學童線上數位閱讀認知負荷量表編製。教育研究與發展期刊,12(4),1-22。
    陳瑞榮(2008)。我國能源科技教育與節能減碳政策之推展現況探討。生活科技教育月刊,41(6),56-70。
    陳麗月、陳碩祈、林曉雯(2016)。國小四年級學生STS進行綠色能源課程學習成效之研究。屏東大學科學教育,7,3-30。
    陸香如(2019)。物聯網專題式學習導入高中職程式設計課程(未出版之碩士論文)。樹德科技大學,高雄市。
    曾婉婷(2016)。成人自我導向學習量表之編製研究(未出版之碩士論文)。國立嘉義大學,嘉義市。
    游自達(2019)。素養導向教學的實踐:深化學習的開展。臺灣教育評論月刊,8(10),6-12。
    游旻寯(2019)。探討差異化專題導向於STEM實作課程對學習成效之影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    黃一峯、朱耀明(2013)。知識來源對學生動手做活動學習影響探究分析。工業科技教育學刊,6,45-56。
    黃文良、陳盟仁、陳益和(2005)。青少年能源教育之研究。工程科技與教育學刊,2(3),355-368。
    黃文良、曾維雄(2006)。青少年再生能源教育教學活動之規劃與設計。工程科技與教育學刊,3(2),160-174。
    黃靖淵(2013)。我國國民中學學生能源素養調查研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    黃寶嬋、何青蓉(2019)。新住民女性知覺社會支持、自我導向學習能力與自我效能關係之研究。教育學誌,41,49-114。
    楊俊鴻、張茵倩、張淑惠(2018)。素養導向課程與教學。臺北市:高等教育。
    楊惠芸(2014)。中小學能源科技教育推動中心種子教師推動能源教育之研究-以新北市為例(未出版之碩士論文)。淡江大學,新北市。
    經濟部能源局(2016)。能源教育推動中心說明會手冊。臺北市:經濟部。
    經濟部能源局(2017)。能源轉型白皮書。臺北市:經濟部。
    經濟部能源局(2018)。全國電力資源供需報告。臺北市:經濟部。
    葉建宏、王志美、范靜媛、吳宇豐、葉貞妮(2020)。動手做態度對手作皮件學習興趣與持續參與意願之研究。紡織綜合研究期刊,30(2),64-72。
    葉建宏、宋修德、范靜媛(2019)。媽寶行為覺知對時尚設計系學生動手做態度與實作課程興趣之相關研究。紡織綜合研究期刊,29(1),34-43。
    廖哲緯(2013)。國民中學能源教育課程教學效果探討-以兩所國民中學為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    廖耿舜(2005)。高中職高二學生物理概念差異性之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    褚欣慧(2013)。擴增實境學習系統使用者的認知型態、學習動機與電腦態度對認知負荷之影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    趙偉順、張玉山(2011)。經驗學習理論在生活科技課程的教學應用-以「扭轉乾坤」曲柄玩具單元為例。生活科技教育月刊,44(6),1-15。
    趙曉美(2019)。素養導向教學的思考與課堂實踐。臺灣教育評論月刊,8(10),27-30。
    劉杰(2008)。e-Learning2. 0 環境中大學生自我導向學習與網路學習動機之探討(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    劉曉雯、楊君琦、鄒幼涵(2010)。臺灣能源科技產業之發展概況與預測。數據分析,5(2),141-153。
    歐嘉瑞(2013)。「能源發展綱領」—國家整體能源發展的總舵手。臺灣經濟研究月刊,36(1),107-117。
    潘文忠(主編)(2014)。十二年國民基本教育課程發展建議書。新北市:國家教育研究院。
    潘怡吟(2001)。遊戲型態教學對國小學生「自然與生活科技」學習之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    蔡清田、陳延興(2013)國民核心素養之課程轉化。課程與教學,16(3),59-78。
    蔡進雄(2019年2月1日)。各國推動STEM教育的新動態。國家教育研究院電子報。取自https://epaper.naer.edu.tw
    鄧運林(1995)。成人敎學與自我導向學習。臺北市:五南圖書。
    鄭燕祥(2015)。國際教改:發展趨勢與研究方向簡報。新北市:國家教育研究院。
    駐洛杉磯辦事處教育組(2013)。英特爾基金會指出STEM教育關鍵,國家教育研究院國際教育訊息電子報,38。取自http://fepaper.naer.edu.tw/paper_view.php?edm_no=38&content_no=2035
    駐美國代表處教育組(2014)。STEM教育為重要基礎和創新依據,國家教育研究院國際教育訊息電子報,62。取自http://fepaper.naer.edu.tw/paper_view.php?edm_no=62&content_no=3392
    盧秀琴、洪榮昭、陳芬芳(2019)。設計STEAM課程的協同教學─以「感控式綠建築」為例。教育學報,47(1),113-133。
    賴清德(2018)。能源政策專案報告。臺北市:行政院。
    謝政夫(2018)。國中學生能源素養表現之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
    簡佩玲、熊治剛(2009)。學校太陽光電示範裝置的建置談國小能源教育。生活科技教育,42(6),109-117。

    英文部分
    Abdulwahed, M., & Nagy, Z. K. (2011). The TriLab, a novel ICT based triple access mode laboratory education model. Computers & Education, 56(1), 262-274.
    Ait, K., Rannikmäe, M., Soobard, R., Reiska, P., & Holbrook, J. (2015). Students’ self-efficacy and values based on A 21st century vision of scientific literacy-A pilot study. Procedia-Social and Behavioral Sciences, 177, 491-495.
    Al-Mamun, M. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 103695.
    Anastasi, A. (1982). Psychological testing. New York, NY: Macmillan Publishing Co.
    Anmarkrud, Ø., Andresen, A., & Bråten, I. (2019). Cognitive load and working memory in multimedia learning: Conceptual and measurement issues. Educational Psychologist, 54(2), 61-83.
    Attari, S. Z., DeKay, M. L., Davidson, C. I., & De Bruin, W. B. (2010). Public perceptions of energy consumption and savings. Proceedings of the National Academy of Sciences, 107(37), 16054-16059.
    Baddeley, A. D., & Hitch, G. (1993). The recency effect: Implicit learning with explicit retrieval? Memory & Cognition, 21(2), 146-155.
    Barnett, J., & Hodson, D. (2001). Pedagogical context knowledge: Toward a fuller understanding of what good science teachers know. Science Education, 85(4), 426-453.
    Bauman, P. C., & Petrock, E. M. (1981). Energy education: Why, what and how? Denver, CO: ERIC.
    Baumert, J. (1993). Lernstrategien, motivationale orientierung und selbstwirksamkeitsüberzeugungen im kontext schulischen lernens. Unterrichtswissenschaft, 21(4), 327-354.
    Beckett, C., & Mansell, R. (2008). Crossing boundaries: New media and networked journalism. Communication, Culture & Critique, 1(1), 92-104.
    Bhushan, B. (2015). Perspective: Science and technology policy - What is at stake and why should scientists participate? Science and Public Policy, 42(6), 887-900.
    Blasch, J., Boogen, N., Daminato, C., & Filippini, M. (2018). Empower the consumer! Energy-related financial literacy and its socioeconomic determinants. CER-ETH-Center of Economic Research at ETH Zurich, Working Paper, 18(289), 1-29.
    Bong, C. L., Fraser, K., & Oriot, D. (2016). Cognitive load and stress in simulation. In V. J. Grant, & A. Cheng (Eds.), Comprehensive healthcare simulation: Pediatrics (pp. 3-17). New York, NY: Springer.
    Bonham, L. A. (1989). Using learning style information, too. New Directions for Continuing Education, 43, 29-40.
    Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
    Brockett, R. G., & Hiemstra, R. (1991). Self-direction in adult learning: Perspectives on theory, research, and practice (1st ed.). London, UK: Routledge.
    Brounen, D., Kok, N., & Quigley, J. M. (2013). Energy literacy, awareness, and conservation behavior of residential households. Energy Economics, 38, 42-50.
    Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23-37). New York, NY: Taylor and Francis.
    Burghardt, M. D., & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as the core process in technology. The Technology Teacher, 64, 6-8.
    Bybee, R. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
    Bybee, R. W. (2010). What is STEM education? Science, 329(5995), 996.
    Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Oxford, England: Routledge.
    Cabrera-Mino, C., Shinnick, M. A., & Moye, S. (2019). Task-evoked pupillary responses in nursing simulation as an indicator of stress and cognitive load. Clinical Simulation in Nursing, 31, 21-27.
    Ceylan, S., & Ozdilek, Z. (2015). Improving a sample lesson plan for secondary science courses within the STEM education. Procedia-Social and Behavioral Sciences, 177, 223-228.
    Chen, T. Y., Oliver, S. Y., Hsu, G. J. Y., Hsu, F. M., & Sung, W. N. (2009). Renewable energy technology portfolio planning with scenario analysis: a case study for Taiwan. Energy Policy, 37(8), 2900-2906.
    Chen, W., Shah, U. V., & Brechtelsbauer, C. (2019). A framework for hands-on learning in chemical engineering education - Training students with the end goal in mind. Education for Chemical Engineers, 28, 25-29.
    Coyle, T. R. (2020). Sex differences in tech tilt: Support for investment theories. Intelligence, 80, 101437.
    D’Ambrosio, U. (2019). Humanity moving since pre-historic times to the future with creative STEAM. In Z. Babaci-Wilhite (Ed.), Promoting language and STEAM as human rights in education (pp. 163-175). Singapore, SG: Springer.
    Dasgupta, C., Magana, A. J., & Vieira, C. (2019). Investigating the affordances of a CAD enabled learning environment for promoting integrated STEM learning. Computers & Education, 129, 122-142.
    Delaney, J. M., & Devereux, P. J. (2019). Understanding gender differences in STEM: Evidence from college applications. Economics of Education Review, 72, 219-238.
    DeWaters, J. E., & Powers, S. E. (2011). Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior. Energy Policy, 39(3), 1699-1710.
    DeWaters, J. E., Qaqish, B., Graham, M., & Powers, S. E. (2013). Designing an energy literacy questionnaire for middle and high school youth. The Journal of Environmental Education, 44(1), 56-78.
    DeWaters, J., & Powers, S. (2013). Establishing measurement criteria for an energy literacy questionnaire. The Journal of Environmental Education, 44(1), 38-55.
    Dewey, J. (1959). The child and the curriculum. Chicago, IL: University of Chicago press.
    Dunn, T. J., & Kennedy, M. (2019). Technology enhanced learning in higher education; motivations, engagement and academic achievement. Computers & Education, 137, 104-113.
    Ebel, R. L. (1979). Essentials of educational measurement. Englewood Cliffs, NJ: Prentice-Hall.
    Eccles, J. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives: Psychological and sociological approaches (pp. 75-146). San Francisco, CA: Freeman.
    Feenberg, A. (2006). What is philosophy of technology? In J. R. Dakers (Ed.), Defining technological literacy-towards an epistemological framework (pp. 5-16). New York, NY: Palgrave-Macmillan.
    Feldt, L. S. (1965). The approximate sampling distribution of Kuder-Richardson reliability coefficient twenty. Psychometrika, 30(3), 357-370.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable ariables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415.
    Frykholm, J., & Glasson, G. (2005). Connecting science and mathematics instruction: Pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127-141.
    Gerjets, P., & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cognitive load: Evidence from hypertext-based instruction. Educational Psychologist, 38(1), 33-41.
    Gill, C., & Lang, C. (2018). Learn to conserve: The effects of in-school energy education on at-home electricity consumption. Energy Policy, 118, 88-96.
    Guglielmino, L. M., & Guglielmino, P. J. (1977). Self-directed learning readiness scale. Boca Raton, FL: Guglielmino.
    Guzey, S. S., Ring-Whalen, E. A., Harwell, M., & Peralta, Y. (2019). Life STEM: A case study of life science learning through engineering design. International Journal of Science and Mathematics Education, 17(1), 23-42.
    Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. Upper Saddle River, NJ: Pearson Prentice Hall.
    Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Upper Saddle River, NJ: Pearson Prentice Hall.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River, NJ: Prentice-Hall.
    Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A primer on partial least squaresstructural equation modeling. Thousand Oaks, CA: Sage.
    Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(1), 22.
    Hancock, G. R., & Mueller, R. O. (Eds.). (2013). Structural equation modeling: A second course. Charlotte, NC: Information Age.
    Hansson, S. O. (2015). The role of technology in science: Philosophical perspectives. Dordrecht, NL: Springer.
    Harker-Schuch, I. E., Mills, F. P., Lade, S. J., & Colvin, R. M. (2020). CO2peration-Structuring a 3D interactive digital game to improve climate literacy in the 12-13-year-old age group. Computers & Education, 144, 103705.
    Herschbach, D. (2009). Technology education: Foundations and perspectives. Homewood, CA: American Technical Publishers.
    Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96-122.
    Hobbs, L., Clark, J. C., & Plant, B. (2018). Successful students-STEM program: Teacher learning through a multifaceted vision for STEM education. In R. Jorgensen, & K. Larkin (Eds.), STEM education in the junior secondary (pp. 133-168). Singapore, SG: Springer.
    Hong, J. C., Hwang, M. Y., Szeto, E., Tai, K. H., & Tsai, C. R. (2016). Positive affect relevant to epistemic curiosity to reflect continuance intention to join a hands-on making contest. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2267-2279.
    Hong, J. C., Tsai, C. R., Hsiao, H. S., Chen, P. H., Chu, K. C., Gu, J., & Sitthiworachart, J. (2019). The effect of the “Prediction-observation-quiz-explanation” inquiry-based e-learning model on flow experience in green energy learning. Computers & Education, 133, 127-138.
    Huang, W., Zheng, D., Chen, X., Shi, L., Dai, X., Chen, Y., & Jing, X. (2020). Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels. Renewable Energy, 147(1), 2160-2170.
    Iacobucci, D. (2014). Gilbert A. Churchill jr.'s editorship of journal of marketing research, 1979-1982. Journal of Marketing Research, 51(1), 105-106.
    International Technology Education Association. (2000). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
    Johnson, D., & Westfall-Rudd, D. (2019). Hands-on learning in agricultural education. The Agricultural Education Magazine, 91(4), 13.
    Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need? Educational Psychology Review, 23(1), 1-19.
    Kanadlı, S. (2019). A meta-summary of qualitative findings about STEM education. International Journal of Instruction, 12(1), 959-976.
    Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11.
    Kelley, T. R., Brenner, D. C., & Pieper, J. T. (2010). Two approaches to engineering design: Observations in STEM education. Journal of STEM Teacher Education, 47(2), 5-40.
    Kempton, W., Harris, C. K., Keith, J. G., & Weihl, J. S. (1985). Chapter 6: Do consumers know "what works" in energy conservation? Marriage & Family Review, 9(1), 115-133.
    Knowles, M. S. (1975). Self-directed learning. New York, NY: Association Press.
    Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers. Englewood Cliffs, NJ: Prentice Hall.
    Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers (Vol. 2, No. 2, p. 135). New York, NY: Association Press.
    Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning & Education, 4(2), 193-212.
    Kratz, R. J. (1980). Implications of self-directed learning for functionally illiterate adults. Denver, CO: ERIC.
    Kucuk, S., & Sisman, B. (2020). Students’ attitudes towards robotics and STEM: Differences based on gender and robotics experience. International Journal of Child-Computer Interaction, 23, 100167.
    Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151-160.
    Kuo, H. C., Tseng, Y. C., & Yang, Y. T. C. (2019). Promoting college student’s learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course. Thinking Skills and Creativity, 31, 1-10.
    Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: a new biology education for the twenty-first century? CBE—Life Sciences Education, 9(1), 10-16.
    Lampert, M. (1985). How do teachers manage to teach? Perspectives on problems in practice. Harvard Educational Review, 55(2), 178-195.
    Lane, J. F., Floress, K., & Rickert, M. (2014). Development of school energy policy and energy education plans: A comparative case study in three Wisconsin school communities. Energy Policy, 65, 323-331.
    Leal-Rodríguez, A. L., & Albort-Morant, G. (2019). Promoting innovative experiential learning practices to improve academic performance: Empirical evidence from a Spanish business school. Journal of Innovation & Knowledge, 4(2), 97-103.
    Lee, A. (2015). Determining the effects of computer science education at the secondary level on STEM major choices in postsecondary institutions in the United States. Computers & Education, 88, 241-255.
    Lee, J., & Yang, J. S. (2019). Global energy transitions and political systems. Renewable and Sustainable Energy Reviews, 115, 109370.
    Lee, L. S., Lee, Y. F., Altschuld, J. W., & Pan, Y. J. (2015). Energy literacy: Evaluating knowledge, affect, and behavior of students in Taiwan. Energy Policy, 76, 98-106.
    Lee, S., Kim, D. H., & Chae, S. M. (2020). Self-directed learning and professional values of nursing students. Nurse Education in Practice, 42, 102647.
    Li, S., Chen, G., Xing, W., Zheng, J., & Xie, C. (2020). Longitudinal clustering of students’ self-regulated learning behaviors in engineering design. Computers & Education, 103899.
    Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6, 19.
    Liao, C. W., Chen, C. H., & Shih, S. J. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Computers & Education, 133, 43-55.
    Lin, C. F. (2019). Seeking the lost subjectivity of students in taiwan's schools-human rights education and competency-oriented learning and teaching of the 12-year basic education curriculum guidelines. Xuexiao Xingzheng Shuangyuekan = School Administrators, 123, 36-53.
    Liu, L. Y., & Huang, X. (2005). Hands-on in American Mathematics Textbooks. Journal of Mathematics Education, 2, 57-59
    Liu, Y., Chen, B., Wei, W., Shao, L., Li, Z., Jiang, W., & Chen, G. (2020). Global water use associated with energy supply, demand and international trade of China. Applied Energy, 257, 113992.
    Lounsbury, J. W., Levy, J. J., Park, S. H., Gibson, L. W., & Smith, R. (2009). An investigation of the construct validity of the personality trait of self-directed learning. Learning and Individual Differences, 19(4), 411-418.
    Machuve, J., & Mkenda, E. (2019). Promoting stem education through sustainable manufacturing: case study of photovoltaic toys. Procedia Manufacturing, 33, 740-745.
    Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of Experimental Social Psychology, 19(5), 469-479.
    Martins, A., Madaleno, M., & Dias, M. F. (2020). Energy literacy: What is out there to know? Energy Reports, 6(1), 454-459.
    Maslow Abraham, H. (1954). Motivation and personality. New York, NY: Harper & Row.
    McGuire, L., Mulvey, K. L., Goff, E., Irvin, M. J., Winterbottom, M., Fields, G. E., ... & Rutland, A. (2020). STEM gender stereotypes from early childhood through adolescence at informal science centers. Journal of Applied Developmental Psychology, 67, 101109.
    Merritt, E. G., Bowers, N., & Rimm-Kaufman, S. E. (2019). Making connections: Elementary students’ ideas about electricity and energy resources. Renewable Energy, 138, 1078-1086.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97.
    Mills, B., & Schleich, J. (2012). Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries. Energy Policy, 49, 616-628.
    Moore, M. G. (1973). Toward a theory of independent learning and teaching. The Journal of Higher Education, 44(9), 661-679.
    Mount, M. K., Barrick, M. R., Scullen, S. M., & Rounds, J. (2005). Higher‐order dimensions of the big five personality traits and the big six vocational interest types. Personnel Psychology, 58(2), 447-478.
    Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618.
    Nakajima, T. M., & Goode, J. (2019). Transformative learning for computer science teachers: Examining how educators learn e-textiles in professional development. Teaching and Teacher Education, 85, 148-159.
    National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.
    Nelson, T., & Squires, V. (2017). Addressing complex challenges through adaptive leadership: A promising approach to collaborative problem solving. Journal of Leadership Education, 16(4), 111-123.
    Newton, X. A., & Tonelli Jr, E. P. (2020). Building undergraduate STEM majors’ capacity for delivering inquiry-based mathematics and science lessons: An exploratory evaluation study. Studies in Educational Evaluation, 64, 100833.
    Nowotny, J., Dodson, J., Fiechter, S., Gür, T. M., Kennedy, B., Macyk, W., ... & Rahman, K. A. (2018). Towards global sustainability: Education on environmentally clean energy technologies. Renewable and Sustainable Energy Reviews, 81, 2541-2551.
    Oxford English Dictionary (2019a). Science. Retrieved from https://en.oxforddictionaries.com/definition/science
    Oxford English Dictionary (2019b). Technology. Retrieved from https://en.oxforddictionaries.com/definition/technology
    Oxford English Dictionary (2019c). Engineering. Retrieved from https://en.oxforddictionaries.com/definition/engineering
    Oxford English Dictionary (2019d). Mathematics. Retrieved from https://en.oxforddictionaries.com/definition/mathematics
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429-430.
    Paas, F. G., & Van Merriënboer, J. J. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35(4), 737-743.
    Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-123.
    Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 294–315). Cambridge, England: Cambridge University Press.
    Park, H., Behrman, J. R., & Choi, J. (2018). Do single-sex schools enhance students’ STEM (science, technology, engineering, and mathematics) outcomes? Economics of Education Review, 62, 35-47.
    Proctor, K. R., & Niemeyer, R. E. (2020). Retrofitting social learning theory with contemporary understandings of learning and memory derived from cognitive psychology and neuroscience. Journal of Criminal Justice, 66, 101655.
    Purzer, Ş., Goldstein, M. H., Adams, R. S., Xie, C., & Nourian, S. (2015). An exploratory study of informed engineering design behaviors associated with scientific explanations. International Journal of STEM Education, 2(1), 9, 1-13.
    Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63, 604-612.
    Remund, D. L. (2010). Financial literacy explicated: The case for a clearer definition in an increasingly complex economy. Journal of Consumer Affairs, 44(2), 276-295.
    Rogers, C. R., & Freiberg, H. J. (1970). Freedom to learn. Columbus, OH: Charles Merrill.
    Rogers, R. W. (1985). Attitude change and information integration in fear appeals. Psychological Reports, 56(1), 179-182.
    Schweder, S., & Raufelder, D. (2019). Positive emotions, learning behavior and teacher support in self-directed learning during adolescence: Do age and gender matter? Journal of Adolescence, 73, 73-84.
    Shove, E., & Walker, G. (2014). What is energy for? Social practice and energy demand. Theory, Culture & Society, 31(5), 41-58.
    Standal, K., Talevi, M., & Westskog, H. (2020). Engaging men and women in energy production in Norway and the United Kingdom: The significance of social practices and gender relations. Energy Research & Social Science, 60, 101338.
    Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34.
    Sturm, H., & Bogner, F. X. (2008). Student‐oriented versus teacher‐centred: The effect of learning at workstations about birds and bird flight on cognitive achievement and motivation. International Journal of Science Education, 30(7), 941-959.
    Sun, C., Shute, V. J., Stewart, A., Yonehiro, J., Duran, N., & D'Mello, S. (2020). Towards a generalized competency model of collaborative problem solving. Computers & Education, 143, 103672.
    Sung, H. Y., Hwang, G. J., Lin, C. J., & Hong, T. W. (2017). Experiencing the analects of confucius: An experiential game-based learning approach to promoting students' motivation and conception of learning. Computers & Education, 110, 143-153.
    Tillman, D., An, S., Cohen, J., Kjellstrom, W., & Boren, R. (2014). Exploring wind power: Improving mathematical thinking through digital fabrication. Journal of Educational Multimedia and Hypermedia, 23(4), 401-421.
    Torshizi, M. D., & Bahraman, M. (2019). I explain, therefore I learn: Improving students’ assessment literacy and deep learning by teaching. Studies in Educational Evaluation, 61, 66-73.
    van den Broek, K. L. (2019). Household energy literacy: A critical review and a conceptual typology. Energy Research & Social Science, 57, 101256.
    Var, I. (1998). Multivariate data analysis. Vectors, 8(2), 125-136.
    Wang, C., Fang, T., & Gu, Y. (2020). Learning performance and behavioral patterns of online collaborative learning: Impact of cognitive load and affordances of different multimedia. Computers & Education, 143, 103683.
    Wang, H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.
    Weng, C., Otanga, S., Weng, A., & Cox, J. (2018). Effects of interactivity in E-textbooks on 7th graders science learning and cognitive load. Computers & Education, 120, 172-184.
    Wojuola, R. N., & Alant, B. P. (2019). Sustainable development and energy education in Nigeria. Renewable Energy, 139, 1366-1374.
    Wooditch, A. M., Rice, A. H., Peake, J. B., & Rubenstein, E. D. (2018). The development of preservice agriculture teachers' pedagogical content knowledge through a greenhouse for teachers course. Journal of Agricultural Education, 59(3), 1-14.
    Zandvliet, D. (2018). STEM and LEAF. International Journal of Innovation in Science and Mathematics Education, 26(8), 3-16.
    Zarrouk, S. J. (2017). Postgraduate geothermal energy education worldwide and the New Zealand experience. Geothermics, 70, 173-180.
    Zhang, L. (2019). “Hands-on“ plus “Inquiry”? Effects of withholding answers coupled with physical manipulations on students' learning of energy-related science concepts. Learning and Instruction, 60, 199-205.
    Zhang, M. J., Newton, C., Grove, J., Pritzker, M., & Ioannidis, M. (2020). Design and assessment of a hybrid chemical engineering laboratory course with the incorporation of student-centred experiential learning. Education for Chemical Engineers, 30, 1-8.
    Zheng, J., Xing, W., Zhu, G., Chen, G., Zhao, H., & Xie, C. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669.
    Zheng, L., Li, X., Zhang, X., & Sun, W. (2019). The effects of group metacognitive scaffolding on group metacognitive behaviors, group performance, and cognitive load in computer-supported collaborative learning. The Internet and Higher Education, 42, 13-24.
    Zheng, R., & Zhou, B. (2006). Recency effect on problem solving in interactive multimedia learning. Journal of Educational Technology & Society, 9(2), 107-118.
    Zhoc, K. C., & Chen, G. (2016). Reliability and validity evidence for the Self-Directed Learning Scale (SDLS). Learning and Individual Differences, 49, 245-250.
    Zografakis, N., Menegaki, A. N., & Tsagarakis, K. P. (2008). Effective education for energy efficiency. Energy Policy, 36(8), 3226-3232. Blanchette, I., & Richards, A. (2010). The influence of affect on higher level cognition: A review of research on interpretation, judgement, decision making and reasoning. Cognition & Emotion, 24(4), 561-595.

    無法下載圖示 電子全文延後公開
    2025/07/31
    QR CODE