簡易檢索 / 詳目顯示

研究生: 于家齊
Yu, Chia-Chi
論文名稱: Main Group Element (S and Bi)-Containing Metal Carbonyl Complexes: Synthesis, Transformation, Reactivity, and Applications
Main Group Element (S and Bi)-Containing Metal Carbonyl Complexes: Synthesis, Transformation, Reactivity, and Applications
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 165
中文關鍵詞: 金屬團簇物羰基氫氣活化
英文關鍵詞: S, Bi, Metal Cluster, Carbonyl Ligand, Hydrogen Activation
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.056.2018.B05
論文種類: 學術論文
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1.硫/錳系統
    當硫粉以及 Mn2(CO)10 以一鍋化方式於 KOH 混合甲醇溶劑加熱回流反應時,可得一罕見的硫–錳含氫配子之羰基團簇物 [(μ-H)Mn3(CO)9(μ3-S)2]2– (1)。由 X-ray 單晶結構鑑定可知化合物 1 係由 S2Mn3 四角錐組成,且其氫配子橋接於一 Mn–Mn 鍵上。有趣的是,藉由質子–氫配子交互方式,1 可與已發表的雙三角錐化合物 [Mn3(CO)9(μ3-S)2]– 進行可逆結構轉換,其中包含著有趣的氫氣產生過程。進一步,當硫粉以及 Mn2(CO)10 以一鍋化方式於莫耳比為 5: 8 的條件下,可生成含硫醇之化合物 [Mn3(CO)9(μ-HS)(μ3-S2)2]2− (3)。由變溫 1H NMR 可知錯合物 3 中的氫配子具有有趣的流動現象。再者,當 3 與 TEMPO 反應時,可得去質子之硫−硫鍵結雙聚物 [{Mn3(CO)9(μ3-S2)(μ3-S2)}2(μ4-S)]4− (9)。由十八電子規則可知,化合物 9 具有 108 個價電子,滿足電子計算。但其卻具有令人意想不到的磁性表現,此表現可藉由固態 EPR 光譜證實。最重要的是,9 可於 UV 燈照下進行氫氣活化,逆反應回化合物 3。最後,此系列含硫之錳羰基錯合物之性質、結構轉換以及氫配子流動特性皆藉由 DFT 理論計算之輔佐進行系統性的討論。
    2.鉍/鉻系統
    成功合成出過去未知的 4 中心–6π 共振平面三角形錯合物 [Bi{Cr(CO)5}3]– (1),並藉由 XAS、XPS 以及 DFT 理論計算得知其中心鉍原子為正 3 價。由化合物 1 結構得知,此鉍原子在鍵結上可扮演雙重的提供者與接受者的角色。與過往鉍三價原子之弱路易士酸性不同,化合物 1 中的鉍三價原子為極強路易士酸,其可吸引極弱路易士鹼氟負離子並產生鍵結、展現溶劑化顯色性質、進行有趣的醚化過程以及具有令人訝異的半導體特性。化合物 1 之能隙為 1.02 eV,主要歸因於其於固態下存在著 Bi···O 和 O···O 之弱作用力。此外,Fe4(CO)4 加成之錯合物 [{Fe(CO)4}Bi{Cr(CO)5}3]3– (1-Fe) 可進行選擇性的去金屬化反應,生成等電子數之 BiCr3 錯合物 1 以及 BiCr2Fe 錯合物 [Bi{Cr(CO)5}2{Fe(CO)4}]– (2)。此結果提供了一個新穎的方式來設計一系列異核金屬引入之鉍/鉻平面三角形錯合物。

    1.S/Mn System
    When the one-pot reaction of S8 powder with Mn2(CO)10 was conducted in refluxing KOH/MeOH, a rare example of S–Mn hydride carbonyl cluster [(μ-H)Mn3(CO)9(μ3-S)2]2– (1) was formed. X-ray crystallographic analysis of 1 displayed a S2Mn3 square-pyramidal core with one Mn–Mn bond bridged by one hydrogen atom. Interestingly, the hydrogen formation was found in the transformation between 1 and the reported S2Mn3 trigonal-bipyramidal cluster [Mn3(CO)9(μ3-S)2]– through the proton–hydride interaction. In addition, a thiol complex [Mn3(CO)9(μ-HS)(μ3-S2)2]2− (3) could be prepared also from the one-pot reaction of S8 powder with Mn2(CO)10 in the molar ration of 5: 8. The variable-temperature (VT) 1H NMR showed that the hydrogen in 3 exhibited significant fluxionality. Further, when 3 reacted with TEMPO, a deprotonated S−S-bonded dimeric cluster [{Mn3(CO)9(μ3-S2)(μ3-S2)}2(μ4-S)]4− (9) was formed. On the basis of 18-electron rule, 9 is an electron-precise species with 108 valence electrons, however, it showed unexpected magnetic propertied as evidenced by the solid-state EPR. Most importantly, cluster 9 could be reconverted back to 3 via the activation of hydrogen by radiation with UV lamp. Finally, the nature, transformation, and hydride fluxionality of these S−Mn carbonyl complexes were systematically discussed with the aid of DFT calculations.

    2.Bi/Cr System
    The formation of a hitherto unknown 4-center, 6π–conjugated trigonal-planar complex, [Bi{Cr(CO)5}3]– (1), is reported, in which the oxidation state of the Bi atom is +3, as evidenced by XAS, XPS, and DFT calculations. The BiIII atom in 1 has dual donor and acceptor properties in its bonding mode. In contrast to the mild Lewis acidity of BiIII, the central Bi in 1 functions as a prodigious Lewis acid site to exhibit strong affinity toward F– ions, unique solvatochromic properties, intriguing etherification through the C–O bond cleavage of alcohols, and surprising semiconducting characteristics with an ultra-narrow optical band gap of 1.02 eV, which can be attributed to the intermolecular Bi···O and O···O interactions in the solid state. The tetrahedral Fe(CO)4-adduct [{Fe(CO)4}Bi{Cr(CO)5}3]3– (1-Fe) allowed the selective demetallation to afford the isoelectronic multiply bonded BiCr3-complex 1 and the BiCr2Fe-complex, [Bi{Cr(CO)5}2{Fe(CO)4}]– (2), which may open a novel pathway for the design of the heterometal-incorporated trigonal-planar Bi-Cr complexes.

    Abstract (Chinese) I Abstract (English) III Chapter 1 Sulfur-Containing Manganese Carbonyl Clusters: Synthesis, Structural Transformation, Hydrogen Fluxionality, and Hydrogen Production as well as Activation 1 1.1 Abstract 1 1.2 Introduction 2 1.3 Results and Discussion 4 1.4 Conclusions 16 1.5 Experimental Section 17 1.6 References 26 1.7 Supporting Information 43 Chapter 2 A Multiply Bonded Trigonal-Planar Bismuth(III) Complex: Prodigious Lewis Acidity, Solvatochromism, Etherification, and Semiconducting Characteristics 78 Appendix Journal Publications 140

    (1) (a) Vignais P. M.; Billoud, B. Chem. Rev. 2007, 107, 4206–4272. (b) De Lacey, A. L.; Fernández, V. M.; Rousset M.; Cammack, R. Chem. Rev. 2007, 107, 4304–4330. (c) Lubitz, W.; Ogata, H.; Rüdiger O.; Reijerse, E. Chem. Rev. 2014, 114, 4081–4148.
    (2) (a) Shriver, D. F. ; Atkins, P. W. ; Overton, T. L. ; Rourke, J. P. ; Weller, M. T. ; Armstrong, F. A. Inorganic Chemistry, 4th ed.; Oxford University Press: New York, 2006; Chapter 26. (b) Metal Clusters in Chemistry; Braunstein, P.; Oro, L. A.; Raithby, P. R., Eds.; Wiley-VCH Publishers: Weinheim, 1999. (c) Solomon, E. I.; Sarangi, R.; Woertink, J. S.; Augustine, A. J.; Yoon, J.; Ghosh, S. Acc. Chem. Res. 2007, 40, 581−591. (d) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047−1076.
    (3) (a) Norris, M. R.; Concepcion, J. J.; Harrison, D. P.; Binstead, R. A.; Ashford, D. L.; Fang, Z.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2013, 135, 2080−2083. (b) Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072−1075. (c) Chen, Z.; Vannucci, A. K.; Concepcion, J. J.; Jurss, J. W.; Meyer, T. J. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, E1461−E1469. (d) Nocera, D. G. Acc. Chem. Res. 2012, 45, 767−776. (e) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850−13851. (f) Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.; Crabtree, R. H.; Brudvig, G. W. Science 1999, 283, 1524−1527. (g) Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Prydun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935−1943. (h) Fillol, J. L.; Codola, Z.; GarciaBosch, I.; Gomez, L.; Pla, J. J.; Costas, M. Nat. Chem. 2011, 3, 807−813. (i) Barnett, S. M.; Goldberg, K. I.; Mayer, J. M. Nat. Chem. 2012, 4, 498−502.
    (4) (a) Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479−490. (b) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259−272. (c) Leitner, W. Coord. Chem. Rev. 1996, 153, 257−284. (d) Jacobsen, H.; Berke, H. Hydridicty of Transition Metal Hydrides and its Implications for Reactivity. In Recent Advances in Hydride Chemistry; Poli, R., Peruzzini, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp 101−106.
    (5) (a) Lau, C. P.; Ng, S. M.; Jia, G.; Lin, Z. Coord. Chem. Rev. 2007, 251, 2223−2237. (b) West, N. M.; Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Coord. Chem. Rev. 2011, 255, 881−898. (c) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621−6658.
    (6) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637−694. (b) Shieh, M.; Yu, C.-C. J. Organomet. Chem. 2017, 849−850, 219−227. (c) Lin, C.-N.; Huang, C.-Y.; Yu, C.-C.; Chen, Y.-M.; Ke, W.-M.; Wang, G.-J.; Lee, G.-A.; Shieh, M. Dalton Trans. 2015, 44, 16675−16679.
    (7) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, H.-W. J. Am. Chem. Soc. 2010, 132, 4032−4033.
    (8) Maity, A.; Teets, T. S. Chem. Rev. 2016, 116, 8873−8911.
    (9) Shieh, M.; Chu, Y.-Y.; Jang, L.-F.; Ho, C.-H. Inorg. Chem. 2014, 53, 4284−4286.
    (10) Shieh, M.; Fu, I-H. Unpublished results.
    (11) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421–4425.
    (12) Lee, H.; Lee, J. W.; Kim, D. Y.; Park, J.; Seo, Y. T.; Zeng, H.; Moudrakovski, I. L.; Ratcliffe C. I.; Ripmeester, J. A. Nature 2005, 434, 743‒746.
    (13) Cihonski, J. L.; Walker, M. L.; Levenson, R. A. J. Organomet. Chem. 1975, 102, 335−337.
    (14) Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem. Int. Ed. 1997, 36, 1854−1856.
    (15) Shieh, M.; Chen, W.-L. Unpublished results.
    (16) Adams, R. D.; Miao, S. J. Organomet. Chem. 2003, 665, 43–47.
    (17) Shieh, M.; Miu, C.-Y. Unpublished results.
    (18) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134–3138.
    (19) Shriver, D. F., Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
    (20) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90–92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827–1837.
    (21) Shieh, M.; Chen, B.-G. Unpublished results.
    (22) Sheldrick, G. M. SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
    (23) (a) Sheldrick, G. M. SHELXL97, Version 97–2, University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. Acta Crystallogr. Sect. A: Fundam. Crystallogr. 2008, 64, 112–122.
    (24) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13.
    (25) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    (26) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.
    (27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Peterson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc., Wallingford CT, 2009.
    (28) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829–5835.
    (29) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066–4073. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735–746.
    (30) Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096.
    (31) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
    (32) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.

    無法下載圖示 本全文未授權公開
    QR CODE