研究生: |
鄭謀鴻 Mou-Hong Cheng |
---|---|
論文名稱: |
新式金屬結構技術開發研究 Novel Metallization Technology development Study |
指導教授: |
鍾朝安
Jong, Chao-An 李敏鴻 Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 金屬導線製程技術 、電鍍銀 、接面電阻 、熱穩定性 |
英文關鍵詞: | Metallization technology, Silver electroplating, Contact resistance, Thermal stability |
論文種類: | 學術論文 |
相關次數: | 點閱:199 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用銀金屬做為半導體元件之金屬導線材料,利用原子層沉積技術製備之氮化鈦薄膜,兼具擴散阻障層與電鍍晶種層透過表面氣體電漿轟擊與稀釋氫氟酸浸泡對氮化鈦薄膜進行表面處理,藉由改善氮化鈦表面濕潤性來觀察銀電鍍於其上的變化,並利用高溫退火實驗藉由接面二極體漏電流實驗結果,顯示氮化鈦薄膜可有效阻擋銀離子於高溫400~600 oC的擴散行為。
本研究透過黃光微影系統製作出350、400以及450 nm線寬的導線模型,使用底部成長的技術,成功地將銀金屬填入導線模型。剛鍍好的銀導線結構比較鬆散、且表面粗糙。相信在退火處理後會比較完整,缺陷也會比較少。
本研究也利用傳統鑲嵌式製程製作出上開口150 nm、底部寬度84nm的導線模型,成功地將銀金屬填入導線模型中,在沒有使用任何添加劑的情況下,中央縫隙將可能會遺留,所以,我們相信在未來,添加劑的研究將會是實驗銀導線金屬化一個很重要的因素。
In this study, we investigated the silver metallization technology and feasibility of Ti-based diffusion barrier for Back-Eend-of-Line (BEOL) interconnect application. A single ALD-TiN film with bi-functional diffusion barrier and plating seed layer was developed. By way of the surface modification of TiN film with energetic plasma bombardment and DHF immersion, the wetting behavior for electroplating Ag film was effectively modified. We successfully plating Ag on treated TiN film without any catalyst or seed layer prior to the Ag deposition. Junction leakage current measurement using n+/p-Si diode showed that the titanium nitride can effectively prevent silver diffusion even after 400oC anneal process.
To integrate the Ag and ALD-TiN barrier process, bottom-up Ag electroplating surrounding by TiN film was proposed. Line width of 350, 400 and 450 nm was formed via Photolithography. Post plating Ag line with distributed grain size was not as smooth as sputtering film. It is believed that the pre-treatment is necessary for better wettability and microstructure.
Except the bottom-up Ag electroplating, traditional damascene metal plating was checked for electroplating condition tuning. A tapered plug with 150nm top-opening and 84nm bottom width was prepared for Ag gap-filling. We found that the seam or central void will be left without any additive added in the electrolyte. That is, the study of additive in the future will be an important issue in realizing Ag metallization.
[1] M. T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI,” IEEE Trans.International Electron Devices Meeting, 1995, pp.241-244.
[2] M. Mayberry, “Peering through the Technology Scaling Fog,”in VLSI Symp. Tech. Dig., 2012,pp.1-4.
[3] J. Li, H. S. Lu, Y. W. Wang, and X. P. Qu, “Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier,”Electrochem. Solid-State Lett.,Vol. 7, Is. 8, pp. G154-G157, 2004.
[4] R. Chen, T. N. Arunagang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd., “Diffusion Studies of Copper on Ruthenium Thin Film,”Journal of The Electrochemical Society.,Vol7, pp. G154-G157, 2004.
[5] C. W. Chen, J. S. Chen, and J. S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta,”Journal of The Electrochemical Society, vol 6, pp. H438-H442, 2008.
[6] S. H. Kwon, O. K. Kwon, J. S. Min, and S. W. Kang,“Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals,”Journal of The ElectrochemicalSociety., Vol 6, pp. G578-G581, 2006.
[7] T. Watanabe, H. Nash, T. Usui, G. Minamihaba, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata,“Self-Formed Barrier Technology using CuMn Alloy Seed for Copper Dual-Damascene Interconnect with porous-SiOC/ porous-PAr Hybrid Dielectric,”International Interconnect Technology Conference, pp. 7-9, 2007.
[8] F. Kreupl, A.P. Graham, M. Liebau, G.S. Duesberg, R. Seidel, and E. Unger, “Carbon Nanotubes for Interconnect Applications,”IEEE Trans. International Electron Devices Meeting, 2004, pp. 683-686.
[9] M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, and P.M. Fauchet,“On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Journal of Selected Topics in Quantum Electronics, Vol 12, Iss 6, pp. 1699-1705, 2006.
[10] T. L. Alford, E. Misra, S. K. Bhagat, and J. W. Mayer,“Influence of Joule heating during electromigration evaluation of silver lines,”Thin Solid Films, Vol 517, Iss 5, pp.1833-1836, 2009.
[11] E. Misra, C. Marenco, N.D. Theodore, and T.L. Alford, “Failure mechanisms of silver and aluminum on titanium nitride under high current stress,”Thin Solid Films, Vol474, pp. 235-244, 2005.
[12] M. Hauder, W. Hansch, J. Gstottner, and D.S. Landsiedel, “Ag metallization with high electromigration resistance for ULSI,”Solid-State Electronics, Vol 47, pp. 1227–1231, 2003.
[13] C. A. Jong, P. J. Sung, M. Y. Lee, and F. J. Hou, “A novel bottom-up Ag contact (30nm diameter and 6.5 aspect ratio) technology by electroplating for 1Xnm and beyond technology,”International Electron Devices Meeting, 2011, pp. 7.6.1 - 7.6.4
[14] J. Vancea, G. Reiss, and H. Hoffmann, “Mean-free-path concept in polycrystalline metals,”Physical Review, B 35, pp. 6435-6437, 1986.
[15] H. Kitada, T. Suzuki, T. Kimura, and T. Nakamura, “Height Dependent Resistivity of Copper Interconnects in the Size Effect,”Materials Research Society Symposium Proceedings, Vol 990, p. B09, 2007.
[16] G. B. Alers, J.Sukamto, S. Park, G. Harm, and J. Reid, “Containing the Finite Size Effect in Copper Lines,”Semiconductor International, Vol 5, p. 38, 2006.
[17] Y. J. Hou, C.M. Tan,“Size effect in Cu nano-interconnects and its implication on electromigration,”Nanoelectronics Conference, pp. 610-618, 2008.
[18] A. Pratt,“Overview of the Use of Copper Interconnects in the Semiconductor Industry,”Advanced Energy, pp. 1-20, 2004.
[19] S. W. Russella, S. A. Rafalskia, R. L. Spreitzera, J. Lia, M. Moinpourc, F. Moghadamc, and T. L,“Alford. Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions,”Thin Solid Films, Vol 262, pp. 154-167, 1995.
[20] X. W. Lin, D. Pramanik,“Future Interconnection Technologies and Copper Metallization,”Solid State Technology, Vol 10, pp.63-79, 1998.
[21] C. Ryu, K. W. Kwon, A. L. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G.W. Ray, and S. S. Wong, “Microstructure and Reliability of Copper Interconnects,” IEEE Trans. Electron Devices, Vol 46, Iss. 6, pp. 1113-1119, 1999.
[22] L. C. Lane, T. C. Nason, G. R. Yang, T. M. Lu, and H. Bakhru, “Secondary Ion Mass Spectrometry Study of the Thermal Stability of Cu/ Refractory Metal/ Si Structures,” Journal of Applied Physics, Vol 69, Iss. 9, p. 6719,1991.
[23] T. Nogami, J. Romero, V. Dubin, D. Brown, and E. Adem, “Characterization of the Cu/Barrier Metal Interface for Copper,” Proceedings of the IEEE. Interconnect Technology Conference, pp.298-300, 1998.
[24] C. A. Chang, “Thermal Stability of the Cu/Ta/PtSi Structures,”Journal of Applied Physics, Vol 67, Iss. 12, pp. 7348-7350, 1990.
[25] J. O. Olowolafe, C. J. Mogab, R. B. Gregory, and M. Kottke, “Interdiffusions in Cu/Reactive-ion-sputtered TiN, Cu/Chemical-vapor-deposited TiN, Cu/TaN, and TaN/Cu/TaN Thin-film structures: Low Temperature Diffusion Analyses,”Journal of Applied Physics, Vol 72, Iss. 9, pp. 4099-4103, 1992.
[26] S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Redker, and K. B. Kim, “Reactively Sputtered TiN as A Diffusion Barrier between Cu and Si,”Journal of Applied Physics, Vol 68, Iss. 10, pp.5176-5187, 1990.
[27] T. L. Alford, L. Chen, and K. S. Gadre, “Stability of silver thin films on various underlying layers at elevated temperatures,” Thin Solid Films, pp. 248-254, 2003.
[28] L. Gao, J. Gstöttner, R. Emling, Ch. Linsmeier, M. Balden, A. Wiltner, W. Hansch, and D. Schmitt-Landsiedel, “Silver Metallization with Reactively Sputtered TiN Diffusion Barrier Films,” Materials Research Society, Vol 812, pp. F8.3.1-F8.3.6, 2004.
[29] H. C. Koo, E. J. Ahn, and J. J. Kim, “Direct-Electroplating of Ag on Pretreated TiN Surfaces,” Journal of The Electrochemical Society, Vol 155,Iss. 1, pp. D10-D13, 2008.
[30] H. O. Pierson, “Handbook of Refractory Nitrides and Carbides”, Noyes Publ, New York,1996.
[31] S. T. Oyama, The Chemistry of Transition Metal Carbide and Nitrides. Blackie Academic and Professional,New York, 1996.
[32] L. E. Toth, “Transition Metal Carbides and Nitrides”. Academic,New York, 1971.
[33] M. Ritala, M. Leskela, “Atomic Layer Deposition in Handbook of Thin Film Materials,” Academic Pree, San Diego,pp. 103-159, 2002.
[34] M. Leskela, M. Ritala, “Atomic Layer Deposition(ALD): From Precursors to Thin Film Structure,” Thin Solid Films,Vol 409,Iss. 1, pp. 138-146, 2002.
[35] D. Adams, T. L. Alford, and J. W. Mayer, “Silver Metallization”,Springer London,2008.
[36] B. C. Baker, C. Witt, D. Wheeler, D. Josell, and T. P. Moffat, “Superconformal Silver Deposition Using KSeCN Derivatized Substrates, ” Electrochemical and Solid-State Letters, pp. C67-C69, 2003.
[37] S. W. Jones, Diffusion in Silicon, IC Knowledge LLC,2000.
[38] M. Hauder, J. Gstöttner, W. Hansch, and D.S. Landsiedel, “Scaling properties and electromigration resistance of sputtered Ag metallization lines,”Applied Physics Letters, Vol 78, Iss. 6, pp. 838-840, 2001.
[39] http://www.oxford-instruments.com(2011/10)
[40] C. J. Liu and J. S. Chen, “Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier,” Appl. Phys. Lett., Vol 80, pp. 2625-2628, 2002.
[41] C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Stamper, A. Domenicucci and X. Chen, “Reduced Cu interface diffusion by CoWP surface coating,” Microelectronic Engineering, Vol 70, pp. 406-411, 2003.
[42] http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/advanced/t6_4_2.html(2011/10)
[43] H. C. Koo, E. J. Ahn, and J. J. Kim, “Direct-Electroplating of Ag on Pretreated TiN Surfaces,” Journal of The Electrochemical Society, Vol 155, pp.D10-D13, 2008.
[44] D. Liao, Y. Lin, H. Yang, H. Witham, J. May, J. Lee, and S. Tso, “Titanium Nitride Thin Films by the Electron Shower Process,” in Proceedings of the 11th International VLSI Multilevel Interconnection Conference, p. 428, 1994.