研究生: |
梁蕙如 |
---|---|
論文名稱: |
國三學生數型命題論證類型及其改變之教學探究 |
指導教授: | 林福來 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 198 |
中文關鍵詞: | 數型命題 、論證類型 、形式演繹 、假設性學習路徑 |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:63 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在瞭解國三學生對數型線性組合命題的論證表現並探究其進行形式論證的認知障礙。並根據這些認知障礙及相關文獻發展教學策略以提升學生的數型命題論證能力。
學生主動建構的數型命題的論證方式主要可分成經驗論證、敘述說明及形式演繹等三類。本研究首先對兩個來自不同學校的國三班級,進行論證能力及論證偏好問卷的施測,由施測結果選取4位學生進行測後訪談以初步瞭解經驗論證的學生及敘述說明的學生進行形式論證之認知障礙。而後再由兩個班級中分別選取主動建構論證與論證偏好均為經驗論證及敘述說明的學生各一名,及論證偏好為形式演繹且主動建構論證時為敘述說明的學生各一名,組成兩個小組進行教學訪談活動。
針對本研究之研究目的,本研究主要研究結果如下:
(一)國三學生進行演繹證明的認知障礙主要應為:(1)未察覺數字例的侷限性(2)表達理由能力不足(3)無法形式的表徵數型(4)無法對代數表徵進行有意義的推論。
(二)國中學生數型命題論證的學習路徑可為:經驗論證到敘述說明,再到形式演繹。學生論證方式由經驗論證到敘述說明的主要認知需求為能察覺經驗論證的不足、能察覺兩數型間的關係及能以語文表達命題中數型的一般性。由敘述說明到代數演繹證明的認知需求為能形式的表徵數型且能物化表徵,以代數表徵進行運算推理。
(三)批判經驗論證有效性的活動是啟動學生開始考慮進行其他一般性論證方式的必要過程。透過評論及比較各種論證方式的有效性,能促使原本認為經驗論證即足夠驗證命題之真偽的學生,逐漸察覺經驗論證僅對所舉的例子有效,而認知到在證明命題時須採取更一般性的論證方式。
(四)數型樣式的一般化活動能增進學生對數型結構的理解,有助於學生進行利用數型樣式的結構說明相關數型的性質,但對學生使用代數表徵進行推論可能無直接的幫助。
(五)透過區辨及分類不同的代數表徵並討論其意涵,能發展學生對代數表徵式的認知,將有助於其將命題中數型表徵成代數式。但研究結果亦發現,雖然表徵的辨識活動有助於學生寫出數型的代數表徵式,但若要使學生能物化此符號表徵,而能以此表徵進行有意義的操弄及推論,仍有待進一步的教學介入。
中文部份
林政輝(民91)。國中生討論數樣式關係時表達理由能例的成長之探究。國立台灣師範大學數學系碩士班碩士學位論文。
林福來、吳家怡、李源順、鄭英豪、連秀巒、林佳蓉、朱綺鴻、陳姿妍、林春慧(民84)。數學證明的瞭解(II)。國科會專題研究計畫成果報告。NSC 84-2511-S-003-072。
林福來、譚克平、吳家怡、陳創義、林佳蓉、郝曉青、曾政清、陳英娥、楊凱琳、林政輝、李宜芬、梁蕙如、高智馨(民91)。青少年數學概念學習研究—子計畫14:青少年數學論證能力發展研究(2/3)。國科會專題研究計畫成果報告。NSC 89-2511-S-003-103。
林福來、譚克平、吳家怡、陳創義、林佳蓉、郝曉青、陳英娥、楊凱琳、、梁蕙如、張瓊華(民93)。青少年數學概念學習研究—子計畫14:青少年數學論證能力發展研究(3/3)。國科會專題研究計畫成果報告。NSC 89-2511-S-003-103。(整理中)
李宜芬(民91)。國三學生突破因附圖造成之論證障礙的學習歷程之研究。國立台灣師範大學數學系碩士班碩士學位論文。
吳慧真(民86)。幾何證明探究教學之研究。國立台灣師範大學數學系碩士班碩士學位論文。
郭汾派、林光賢和林福來(民78)。國中生文字符號概念的發展。國科會專題研究計畫報告。NSC 76-0111-S003-08;NSC 77-0111-S003-05A。
西文部份
Alibert,D. &Thomas, M.(1991).Research on mathematical proof. In Tall,D. (Ed.), Advanced Mathematical Thinking. (pp.215-230).The Netherlands, Kluwer Academic Publishers.
Balacheff, N.(1988).Aspects of proof in pupils’ practice of school mathematics.In Pimm,D. (Ed.),Mathematics, Teachers and Children(pp216-238).London: Hodder & Stoughton.
Balacheff, N.(2002).The researcher epistemology: a deadlock for educationa; research on proof. Proceedings of 2002 International Conference on Mathematics: Understanding Proving and Prove to Understand.(pp. 23-44) Taipei, Taiwan: National Taiwan Normal University.
Bishop, J.(2000).Linear geometric number patterns: middle school students’ strategies. Mathematics Education Research Journal, Vol. 12(2),107-126.
Chazan, D.(1993).High school geometry students’ justification for their view a of empirical evidence and mathematical proof . Educational Studies in Mathematics,24:395 - 387.
Chen, C.Y, Lin F.L., Liang H.J. ,Yang K.L. & linfl team.(2002).A Multi-Dimensional Hypothetical Learning Trajectory of Arguing Statements about Linear Combination of Number Patterns. Proceedings of 2002 International Conference on Mathematics: Understanding Proving and Prove to Understand .(pp.148-157) .Taipei, Taiwan: National Taiwan Normal University.
Davis, R. B.(1986).Algebra in elementary schools. Proceedings of the 5th International Congress on Mathematical Education, Birkhauser, Bosten.
Dreyfus, T.(1991).Advanced mathematical thinking process. In Tall,D. (Ed.), Advanced Mathematical Thinking. (pp.25-41).The Netherlands, Kluwer Academic Publishers.
Dreyfus, T.(1999).Why Janny can’t proof(with apologies to Morris Kline). Educational Studies in Mathematics,38:85-109.
Duval, R.(1991).Structure du Raisonnement déductif et apprentissage de la demonstration. Educational Studies in Mathematics, 22(3).233-263.
Duval, R.(1998).Geometrical from a cognitive of view. Perspectives on the Teaching of Geometry for 21st century. An ICMI Study.(pp.37-52)
Gravemeijer, K.(1994).Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education, Vol. 25(5),443-471.
Gravemeijer, K.(2001).Developmental research, a course in elementary data analysis as an example. In F.L. Lin(Ed.),Proceedings of 2001 The Netherlands and Taiwan Conference on Mathematics Education. (pp. 43-68.)Taipei, Taiwan: National Taiwan Normal University.
Hanna, G.(1990).Some pedagogical aspects of proof. Interchange, 21(1).6-13.
Hanna, G. & Janke, N.(1996).Proof and proving. In Bishop, A. et al.(eds.) , International handbook of mathematics education . (pp.877-908). Dordrecht: Kluwer Academic Publishers.
Harper, M. K.(1987).Ghosts of diophantus. Educational Studies in Mathematics, 18:75-90.
Harel, G. & Sowder, L.(1998).Students’ proof schemes: Results from exploratory studies. In E. Dubinsky, A. Schonfeld,& J. Kaput(Eds.), Research in collegiate mathematics education. Vol. 3,234-283.
Harel, G.(2001). The Development of Mathematical Induction as a Proof Scheme: A Model for DNR-Based Instruction. In S. Campbell &R.Zaskis (Eds.).Learning And Teaching Number Theory. (pp.185-212).
Healy, L. & Hoyles, C.(2000). A Study of Proof Conceptions in Algebra. Journal for Research in Mathematics Education, 31(4).396-428.
James, N. & Mason, J.(1982).Towards recording. In R. R. Skemp (ed.),Visible Language,pp.249-258.
Kieran, C.(1992).The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.391-419).
Küchemann, D.(1981).Algebra. In K. M. Hart, M. L. Brown, D. E. Küchemann,D. Keslake, G.Ruddock, & Macartney.(Eds.),Children’s understanding of mathematics:11-16(pp.102-119).
Miyakawa, T. (2002). Relation between proof and conception: The case of proof for the sum of two even numbers. PME26, 3, 353-360.
Miyazaki, M.(2000).Levels of Proof in Lower Secondary School Mathematics-As Steps from ad Inductive Proof to an Algebraic Demonstration. Educational Studies in Mathematics,41,47-68.
Miwa, T(2001).Crucial issue in teaching of symbolic expressions. Tsukuba Journal of Educational Study in Mathematics. Vol 20,p1-22.
Moore, R. C.(1994).Making the transition to formal proof. Educational Studies in Mathematics,27,249-266.
Lee, L.(1996).An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran and L. Lee (Eds.). Approaches to Algebra. (pp.87-106).Dordrecht: Kluwer Academic Publishers.
Lakatos, I.(1986).Proof and refutation: The logic of mathematical discovery. Cambridge , MA: Harvard University Press.
Orton, A. and Orton, J.(1999).Pattern and the approach to algebra. In A. Orton (Ed.) , Pattern in the Teaching and Learning of Mathematics (pp.104-120). London: Cassell.
Sfard, A.(1991).On the dual nature of mathematics conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics,22(1),1-36.
Simon, M. A.(1995).Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, Vol. 26(2),114-145.
Sierpinska, A.(1994).Understanding in mathematics. Washington, D.C.:Falmer.
Threlfall, J.(1999).Repeating patterns in the primary years. In A. Orton (Ed.) , Pattern in the Teaching and Learning of Mathematics (pp.18-30). London: Cassell.
Usiskin, Z.(1980). What should not be in the algebra and geometry curricula of average college-bound students? Mathematics Teacher, 73,413-424.
Van den Heuvel-Panhuizen, M.(2002).Realistic Mathematics Education as work in progress. In F.L. Lin(Ed.),Proceedings of 2001 The Netherlands and Taiwan Conference on Mathematics Education. (pp.1-42) Taipei, Taiwan: National Taiwan Normal University.
Waring, S. and Orton, A. & Roper, T.(1999).Pattern and Proof. In A. Orton (Ed.) , Pattern in the Teaching and Learning of Mathematics (pp.192-206). London: Cassell.
Yang ,K. L. & Lin F. l.(in press) An Approach to Advancing Understanding of Learning Trajectories of Adolesecnt Mathematical Proof.
Zazkis, R., & Liljedahl, P.(2002).Repeating patterns as a gateway. In ….. Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education. (Vol. 1,pp213-217)