簡易檢索 / 詳目顯示

研究生: 林廷威
LIN, Ting-Wei
論文名稱: 化學氣相沉積法製作鈣鈦礦共振型發光二極體之特性研究
Chemical Vapor Deposition of Perovskite Resonant Cavity Light Emitting Diodes Characteristic Research
指導教授: 李亞儒
Lee, Ya-Ju
口試委員: 張俊傑 楊斯博 李亞儒
口試日期: 2021/08/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 47
中文關鍵詞: 高溫爐管製程鈣鈦礦高反射鏡共振腔發光二極體
英文關鍵詞: CsPbBr3
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101271
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一項有別於過去常用的化學方式備製鈣鈦礦薄膜的製程方法,改善化學溶液環境汙染的困局。利用化學氣相沉積法(Chemical Vapor Deposition)在ITO基板成長無機鈣鈦礦材料CsPbBr3薄膜,達成無使用化學溶液的製程。藉由成長溫度、壓力、流量的調控研究,在1.5 cm *1.5 cm 玻璃基板放置距離粉末下游13.5 cm,使用單熱源加熱包650 ℃下通氮氣流量50 sccm壓力在600 Torr下可成長出微米等級的鈣鈦礦材料薄膜。本研究也成功開發出運用化學氣相沉積法成長在ITO基板之大面積鈣鈦礦材料CsPbBr3薄膜。
    再結合我們採用二種一者為下反射鏡布拉格反射鏡(Distributed Bragg Reflectors; DBRs)另一者為金屬鏡面最為上反射鏡,目前大部分的鈣鈦礦發光二極體之電子傳輸層與電洞傳輸層,仍使用有機材料,這些材料除了環境耐候性差以及價格昂貴之外,不論在製造還是丟棄時,對環境都有很大的污染性,為了改善這個問題,本研究採用低環境汙染、價格便宜且耐候性佳之氧化鋅(ZnO)傳輸層形成微共振腔發光二極體;討論有無DBR之發光強度與半高寬之差別。

    This study proposes a process method that is different from the usual chemical methods used in the past to prepare perovskite films to improve the solubility of chemical solution precursors and the dilemma of environmental pollution. Using Chemical Vapor Deposition (Chemical Vapor Deposition) to grow the inorganic perovskite material CsPbBr3 thin film on the ITO substrate to achieve a process without the use of chemical solutions. Through the research on the regulation of growth temperature, pressure and flow rate, the 1.5 cm * 1.5 cm glass substrate is placed 13.5 cm downstream of the powder, and the argon (Ar) flow rate is 50 sccm and the pressure is 600 Torr at 650 ℃ using a single heat source heating package. A thin film of micron-level perovskite material is grown. This research has also successfully developed a large-area perovskite material CsPbBr3 thin film grown on an ITO substrate using chemical vapor deposition. In combination, we use two types: DBR(Distributed Bragg Reflectors; DBRs) and the other is the metal mirror as the top reflector. At present, most of the perovskite light-emitting diodes have electron transport layers and electrical The hole transport layer still uses organic materials. In addition to the poor weather resistance and high price, these materials have great pollution to the environment whether they are manufactured or discarded. In order to improve this problem, this study adopts low environmental pollution, The zinc oxide (ZnO) transport layer, which is inexpensive and has good weather resistance, forms a micro-cavity light-emitting diode; discuss the difference between the luminous intensity and the FWHM of DBR.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章緒論 1 1.1 前言 1 1.2研究動機與目的 2 1.3論文架構 2 第二章 基本原理及文獻回顧 3 2.1鈣鈦礦介紹 3 2.2 ITO的材料性質 5 2.3 光致發光介紹與原理 6 2.4 鈣鈦礦發光二極體原理 7 2.5薄膜光學特性 9 2.5.1濾波片的設計方式 9 2.5.2四分之一波長膜堆 9 2.6 法布理-布洛共振腔(Fabry-Perot Cavity) 14 2.7 賽爾效應 (Purcell effect) 15 第三章實驗方法及使用材料 16 3.1實驗流程 16 3.2 設計高反射鏡與實驗參數 16 3.2.1基板清潔 17 3.2.2材料蒸鍍條件 18 3.3 積分球-穿透反射量測系統 19 3.4高溫爐管製程 20 3.4.1 實驗裝置 20 3.4.2 高溫爐管實驗步驟 21 3.5 PMMA溶液配製 21 3.6薄膜濺鍍 22 3.7黑箱量測 23 3.8 發光二極體元件製程 24 3.8實驗耗材 25 第四章 結果與討論 26 4.1 爐管製程分析 26 4.1.1 平放基板下降至不同溫度取出之爐管製程分析 26 4.1.2 平放基板不同持溫時間之爐管製程分析 28 4.1.3 平放基板不同位置下降至不同溫度取出之爐管製程分析 30 4.1.4平放基板不同位置不同持溫溫度之爐管製程分析 31 4.1.5基板立放不同升溫溫鍍爐管製程分析 33 4.1.6基板立放不同時間取出之爐管製程分析 35 4.1.7 基板立放不同位置之爐管製程分析 38 4.2 鈣鈦礦薄膜吸收光譜與光致發光光譜 39 4.3 高反射鏡分析 40 4.4有無共振腔元件電致發光分析 42 4.4.1 RCLED與LED I-V 特性 43 4.4.2 RCLED與LED EL分析 44 第五章 結論與未來展望 45 參考文獻 46

    [1] Wenk, Hans-Rudolf; Bulakh, Andrei (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7
    [2] Ashoori, R. C. (1996). "Electrons in artificial atoms". Nature. Bibcode:1996. doi:10.1038/379413a0
    [3] Kastner, M. A. (1993). "Artificial Atoms". Physics Today. Bibcode:1993. doi:10.1063/1.881393.
    [4] Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. doi: 10.1039/C6CE02314B
    [5] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "photochemistry".
    [6] Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
    [7] Osting, B. (2012). "Bragg structure and the first spectral gap". Applied Mathematics Letters. 25 (11): 1926–1930. doi:10.1016/j.aml.2012.03.002.
    [8] Sudipta Seth , Anunay Samanta , “A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition , ” Scientific Reports , DOI: 10.1038/srep37693 (2016)
    [9] A. Feldhoff , M. Arnold , J. Martynczuk ,“The solegel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions, ” Solid State Sciences, doi:10.1016/j (2008)
    [10] Dan Wang , Dan Wu, Di Dong , Wei Chen, “Polarized emission from CsPbX3 perovskite quantum dots, ” Nanoscale , DOI: 10.1039/c6nr01915c(2016)
    [11] R. M. PITICESCU , P. VILARNHO “Hydrothermal synthesis of perovskite based materials for microelectronic applications, ” Advanced materials ,Vol. 8, No. 2 (2006)
    [12] Loredana Protesescu , Sergii Yakunin , Maryna I. Bodnarchuk, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, ” Nano Let , DOI: 10.1021/nl5048779 (2015)
    [13] Bridgemanite on Mindat.org.
    [14] 李正中。薄膜光學與鍍膜技術。第八版。藝軒圖書出版社。新北市。2016
    [15] https://www.x-mol.com/news/13131
    [16] http://news.sciencenet.cn/htmlpaper/201762713355319044352.shtm
    [17] https://www.renishaw.com.tw/tw/photoluminescence-explained--25809
    [18] Zheng, Haihua, et al. "Ultra-bright pure green perovskite light-emitting diodes." Applied Physics Letters 118.26 (2021): 262102.
    [19] Roycroft, B., et al. "Experimental Characterisation of GaN‐Based Resonant Cavity Light Emitting Diodes." physica status solidi (a) 192.1 (2002): 97-102.
    [20] Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., ... & Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters, 15(6), 3692-3696.

    無法下載圖示 本全文未授權公開
    QR CODE