簡易檢索 / 詳目顯示

研究生: 蔡尚智
Shang-Jyh Tsai
論文名稱: 不同恢復方式對衰竭運動後生理值的影響
Effects of Active Recovery on Physical Responses in Senior High School Male Athletes
指導教授: 徐孟達
Hsu, Meng-Da
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 44
中文關鍵詞: 動態恢復血乳酸尿酸
英文關鍵詞: active recovery, blood lactate, uric acid
論文種類: 學術論文
相關次數: 點閱:318下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同恢復方式對衰竭運動後生理值的影響

    2006年6月 研 究 生 :蔡尚智
    指 導 教 授 :徐孟達
    摘 要
    訓練過程之中,如何進行適當的恢復方式是提升訓練效果與改善運動成績的重要關鍵。因此,本研究的目的在探討『不同恢復方式對衰竭運動後生理值的影響』。
    實驗中共招募20位高中男生田徑選手,依其最大攝氧量配對分成動態恢復組(平均年齡為16.17±1.13歲、平均最大攝氧量為57.25±8.71 ml/min-1.kg-1)與靜態恢復組(平均年齡為16.63±1.03歲、平均最大攝氧量為58.52±9.00 ml/min-1.kg-1),兩組均進行連續七天的漸增衰竭運動,動態恢復組在每天衰竭運動後再接著20分鐘低強度 (35﹪VO2max) 運動,而安靜休息組則採坐姿休息。並於第1、第4及第7天運動前、運動後立即、運動後20分鐘及運動後2小時進行採血,以便分析血乳酸濃度與尿酸濃度。所得資料以混合設計二因子變異數進行相關考驗。結果發現:
    一、運動衰竭時間方面:不論動態恢復組或靜態恢復組,第七天的運動衰竭時間皆明顯較第一天及第四天長(p< .05)。
    二、血乳酸濃度部份:不論動態恢復組或靜態恢復組,運動結束立刻的血乳酸濃度都明顯高於運動前,且在運動後2小時即回復至基礎值,但動態恢復組在運動後20分鐘的濃度都明顯較靜態組來的低。
    三、尿酸濃度部份:不論不論動態恢復組或靜態恢復組,運動後恢復期的濃度都明顯高於較運動前,而基礎值在連續訓練後,有下降的趨勢,但未達顯著水準(p> .05)。
    經由本研究可得到以下結論:運動後從事低強度地動態恢復能使血乳酸濃度儘早恢復,因此可減少身體產生疲勞的機會,至於運動後尿酸濃度過高部份,則應適度補充水分以增加尿酸排除率,進而達到保健身體之效。

    關鍵詞:動態恢復、血乳酸、尿酸

    Effects of Active Recovery on Physical Responses in
    Senior High School Male Athletes

    June 2006 Student:Shang-Jyh Tsai
    Advisor:Mong-Da Hsu

    Abstract
    Purpose:The purpose of this study was to examine the effect of active recovery on physical responses in senior high school male athletes. Method:Twenty senior high school male athletes were recruited as the subjects for this study. They were divided into two different group according to VO2max values:active recovery group (AR; age=16.17±1.13 years, VO2max values=57.25±8.71 ml/min-1.kg-1) and rest recovery group (RR; age=16.63±1.03 years, VO2max values=58.52±9.00 ml/min-1.kg-1). Both groups performed incremental exercise until volitional exhaustion on the treadmill and each subjects exercised 7 days continuously. After exhaustive exercise AR jogged lasting 20 minutes at 35﹪VO2max, and RR rested 20 minutes on the chair everyday. Blood samples were collected at rest before exercise, immediately exhaustive exercise, and 20 minutes, 2 hours after exercise on the 1st, 4th and 7th day. Blood lactate and uric acid were measured. All datas were analyzed using mixed design two-way ANOVA. Result:1) Longer running time on the 7th day than on the 1st and 4th day (p< .05), but there were no significant difference between AR and RR (p> .05). 2) Blood lactate were significant higher at immediately exhaustive exercise, but recover to baseline at 2 hours after exercise. 3) Blood lactate were significant lower in AR at 20 minutes after exercise on each day. 4) Uric acid were significant higher (p< .05) in both group during recovery period (respectively at immediately after exercise and at 20 minutes, 2 hours after exercise). Conclusion:Blood lactate was quickly recover to baseline in the AR. It’s may decrease the chance from fatigue after exhaustive exercise training.

    Key words:active recovery、blood lactate、uric acid

    目 次 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 謝誌……………………………………………………………………Ⅲ 目次……………………………………………………………………Ⅳ 表次……………………………………………………………………Ⅵ 圖次……………………………………………………………………Ⅶ 第壹章緒論……………………………………………………………1 第一節、前言………………………………………………………1 第二節、問題背景…………………………………………………2 第三節、研究目的…………………………………………………4 第四節、名詞操作性定義…………………………………………4 第五節、研究範圍…………………………………………………4 第貳章文獻探討………………………………………………………5 第一節運動與乳酸的關係…………………………………………5 第二節運動與尿酸的關係…………………………………………13 第参章研究方法與步驟………………………………………………19 第一節、研究對象…………………………………………………19 第二節、實驗設計…………………………………………………19 第三節、實驗器材…………………………………………………20 第四節、實驗前的準備……………………………………………20 第五節、實驗方法與步驟…………………………………………21 第六節、血液處理與分析…………………………………………24 第七節、資料處理分析………………………………………………24 第肆章結果……………………………………………………………25 第一節、受試者基本資料…………………………………………25 第二節、不同恢復對運動耗竭時間的影響………………………25 第三節、不同恢復方式對血液中乳酸濃度變化的影響…………26 第四節、不同恢復方式對血液中尿酸濃度變化的影響…………28 第五章討論……………………………………………………………31 第一節、不同恢復對運動耗竭時間的影響………………………31 第二節、不同恢復方式對血液中乳酸濃度變化的影響…………33 第三節、不同恢復方式對血液中尿酸濃度變化的影響…………35 第四節、結論………………………………………………………37 引用文獻………………………………………………………………38 表次 表2-1 不同距離跑後血乳酸值………………………………………7 表2-2 不同距離捷式游後血乳酸值…………………………………7 表2-3 不同時間全力運動所產生的疲勞及乳酸的堆積程度………8 表3-1 最大攝氧量跑步測試之強度與時間關係表…………………24 表4-1 全體受試者之基本資料………………………………………26 表4-2 不同恢復方式於第一、四、七天運動至衰竭時間…………27 表4-3-1 不同恢復方式在不同時間點之血乳酸濃度變化情形……28 表4-3-2 不同恢復方式在不同時間點之血乳酸濃度變化情形……28 表4-3-3 不同恢復方式在不同時間點之血乳酸濃度變化情形……28 表4-4-1 不同恢復方式在不同時間點之尿酸濃度變化情形………29 表4-4-2 不同恢復方式在不同時間點之尿酸濃度變化情形………29 表4-4-3 不同恢復方式在不同時間點之尿酸濃度變化情形………30 圖次 圖2-1 乳酸生成的過程………………………………………………6 圖2-2 形成尿酸之化學反應…………………………………………14 圖3-1 實驗流程圖……………………………………………………22

    引用文獻
    丁文琴(1996)。不同運動強度恢復期女性血乳酸最高值之探討。未出版碩士論文,國立台灣師範大學體育研究所,台北市。

    三上俊夫。(1983)。如何預防運動引起的尿酸過多症。中華民國大專體育總會72年度體育學術研討會專刊,300-311。

    方進隆(1990)。長跑訓練和運動強度對青年男子血清尿酸之影響。中華民國體育學會體育學報,12,115-142。

    方進隆(1991)。運動與高尿酸血症。中華體育,5(1),1-9。

    王永盛(1994)。現代運動訓練。北京市:北京體育大學出版社。

    伊藤 朗(1983)。各種運動和運動性高尿酸現象。中華民國大專體育總會72年度體育學術研討會專刊,296-302。

    林文郎、何忠鋒(1998)。血乳酸與運動之探討。大專體育,40,115-124。

    林正常(1986)。運動科學與訓練。台北市:健行文化出版公司。

    林正常(1996)。運動生理學實驗指引。台北市:師大書苑。

    林正常(1997)。運動生理學。台北市:師大書苑。
    林錫芳(1989)。運動與高尿酸症之探討。中華體育季刊,9,56-60。

    吳家慶(2005)。不同強度動態恢復對損傷肌肉之功能及跑步經濟性的影響。未出版的博士論文,國立台灣師範大學體育研究所,台北市。

    吳慧君、林正常(1989)。身體活動對老年人血脂肪與尿酸的影響。中華民國大專體育總會78年度體育學術研討會專刊,181-182。

    郭黎、陳文鶴 、段子才(2005)。運動後乳酸清除率與運動能力的關係,上海體育學院學報,29(2),44-47。

    黃永任(1994)。運動科學講座。台北市:八熊星出版社。

    黃政典(1987)。先天遺傳性與後天運動量對血清尿酸、膽固醇、三酸甘由脂、脂蛋白新陳代謝之影響調查報告,台北市。

    黃建財(2004)。運動排汗對尿液尿酸排泄之影響。未出版博士論文,國立陽明大學公共衛生研究所,台北市。

    陳武山、陸伯珩、李建平、林麗雅、賴榮興(1998)。游泳運動員負荷後放鬆活動強度與血乳酸清除的研究,體育科學,18(5),58-61。

    陳武山(1999)。影響大強度負荷後血乳酸清除速率的因素。體育與科學,20,17-22。

    陳相榮(1990)。各種恢復方式對最大運動後乳酸排除的影響。省體專學報,18,137-167。

    陳樹屏(1990)。不同肌肉群之動態恢復對血乳酸排除率的影響。未出版的碩士論文,國立台灣師範大學體育研究所,台北市。

    陳洁敏(2000)。大強度力量訓練後乳酸消除的放鬆性負荷強度的研究。體育與科學,21,40-42。

    陳肇真(1984)。內科學。台北市:和記圖書出版社。

    梁錫華(2002)。運動與血乳酸。湖北體育科技,21(4),416-418。

    馮偉權、翁慶章(1990)。血乳酸與運動訓練-應用手冊。北京市:人民體育出版社。

    謝孟志(1993)。運動與尿酸。成大體育,36(2),39-40。

    謝軍、 劉斌(2004)。整理活動方式對消除運動員運動後血乳酸效果的分析。上海體育學院學報,28(5),69-71。

    劉聰(2000)。大運動量訓練後不同放鬆練習乳酸排出量的觀察。湖北體育科技,4,41-43。

    Adams, G. R., Fisher, M. J., & Meyer, R. A. (1991). Hypercapnic acidosis and increased H2PO4-concentration do not decrease force in cat skeletal muscle. The American journal of physiology. 260 (4 Pt 1), 805-812.

    Bakula Trivedi & Willam H. Danforth (1966). Effect on pH on the kinetics of frog muscle phosphofructokinase. The Journal of Biological Chemistry, 241, (17), 4110-4114.

    Basco, (1970) . P0wer supply for anodic stripping of chromium on Nickel electrodeposits. Plating,57(7), 714.

    Belcastro, A. N. & Bonen, A. (1975). Lactic removal rates during controlled and uncontrolled recovery exercise. Journal Applied Physiology, 39, 932-936.

    Boileau, R. A., Misner, J. E., Dykstra, G. L., & Spitzer, T. A. (1983). Blood lactate acid removal during treadmill and bicycle exercise at various intensities. The Journal of sports medicine and physical fitness, 23, 159~167.

    Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and science in sports and exercise, 24 (5), 512-520.
    Clemente, F.R., Matulionis, D.H., Barron, K.W., & Currier, D.P., (1991). Effect of motor neuromuscular electrical stimulation on microvascular perfusion of stimulated rat skeletal muscle. Physical therapy, 71(5), 391-404.

    Cronau, L. H. Jr., Rasch, P. J., Hamby, J. W., & Burns, H. J. Jr. (1972). Effects of strenuous physical training on serum uric acid levels. The Journal of sports medicine and physical fitness, 12(1), 23-25.

    Fleck, S. J., & Kraemer, W. J. (1997). Designing resistance training programs (2nd ed.). Champaign, IL: Human Kinetics.

    Gmada, N., Bouhlel, E., Mrizak, I., Debabi, H., Ben Jabrallah, M., Tabka, Z., Feki, Y. & Amri, M. (2005). Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man. International journal of sports medicine, 26(10), 874-879.

    Gollnick, P. D., & Hermansen, L. (1973). Biochemical adaptations to exercise: anaerobic metabolism. Exercise Sports Science Review, 1, 1~43.

    Green, H. J., Thomson, J. A., & Houston, M. E. (1987). Supramaximal exercise after training-induced hypervolemia. II. Blood/muscle substrates and metabolites. Journal of applied physiology, 62,1954-1961.

    Green, H. J., & Fraser, I. G. (1988). Differential effects of exercise intensity on serum uric acid concentration. Medicine and science in sports and exercise, Feb; 20(1), 55-59.

    Green, H. J., Grant, S. M., Phillips, S. M., Enns, D. L., Tarnopolsky, M. A., & Sutton, J. R. (1997). Reduced muscle lactate during prolonged exercise following induced plasma volume expansion. Canadian Journal of physiology and pharmacology, 75(12), 1280-1286.

    Hermansen, L., & Osnes, J-B. (1972). Blood and muscle PH after maxial exercise in man. Journal Applied Physiology, 32, 304-308.

    Hultman, E., & Saholm, K. (1980). Acid-base balance during exercise. Exercise and Sport Science Review, 8, 41-128.

    Ito, A, et. al. (1980). Uric Acid Metabolism at Exercise in Hyperuricemia, J. physiol Soc Japan, 42: 364.

    Janssen, G. M., Degenaar, C. P., Menheere, P. P., Habets, H. M., & Geurten, P. (1989). Plasma urea, creatinine, uric acid, albumin, and total protein concentrations before and after 15-, 25-, and 42-km contests. International journal of sports medicine, 10(suppl), 132-138.

    Kaczynski, M., Montgometery, D. L., Koziris, P., Travlos, A. K. & Turcotte, R. A. (1988). The Effects of Active and Passive Recovery on Blood Lactate Concentration and Performance in a Simulated Ice Hockey Task. Canadian Journal of Sport Sciences, 13 (3), Sept.

    Mero, A. (1988). Blood Lactate Production and Recovery from Anaerobic Exercise in Trained and Untrained Boys. European Journal of applied Physiology, 57(6), 660~666.

    Mohr, T., Akers, T. K., & Wessman, H. C. (1987). Effect of high voltage stimulation on blood flow in the rat hind limb. Physical therapy, 67 (4), 526-533.

    Powers, S. K. & Howley, E. T. (1997). Exercise Physiology: Theory and Application to Fitness and Performance (3rd Ed.). Dubuque, IA: Brown & Benchmark Publishers.

    Rougier, C., & Babin, J. P. (1975). A Blood and Urine Study of Heavy Muscular Work on Ureic and Uric Metabolism in Man. The Journal of sports medicine, 15, 212-222.

    Robergs, R. A., Icenogle, M., Hudson, T. L., & Greene, E. R. (1997). Temporal inhomogeneity I brachial artery blood flow during forearm exercise. Medicine & Science in Sports & Exercise, 29, 1021-1027.

    Weltman, R., & Regan, J. D. (1983). Prion exhaustive exercise and subsequent,Maximal constant load exercise performance. International Journal of Sports Medicine, 4, 184-189.

    Sutton, J. R., Toews, C. J., Ward, G. R., & Fox, I. H. (1980). Purine Metabolism during Strenuous Muscular Exercise in Man. Metabolism, 29(3), 254-260.

    Sahlin, K. G., & Palmskog, E. (1978). Hultman, Adenine Nucleotide and IMP Contents of the Quadriceps Muscle in Man after Exercise, Pflügers Archiv : European journal of physiology, 347, 193-198.

    Tardieu-Berger, M., Thevenet, D., Zouhal, H., & Prioux, J. (2004). Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. European journal of applied physiology, 93, 145-152.

    Zachau-Christiansen, B. (1959). The rise in the serum uric acid during muscular exercise. Scandinavian journal of clinical and laboratory investigation, 11(1), 57-60

    QR CODE