研究生: |
李怡慧 Lee, Yi-Hui |
---|---|
論文名稱: |
Search-Based Approach for Automatic Relation Extraction of Disease and Symptom Search-Based Approach for Automatic Relation Extraction of Disease and Symptom |
指導教授: |
柯佳伶
Koh, Jia-Ling |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | medical domain text mining 、relation extraction 、web-search data |
英文關鍵詞: | medical domain text mining, relation extraction, web-search data |
DOI URL: | https://doi.org/10.6345/NTNU202203029 |
論文種類: | 學術論文 |
相關次數: | 點閱:125 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無中文摘要
In this thesis, we focus on automatically constructing the relationship between disease and symptoms by online encyclopedia and web search result, including the ranking of the candidate symptoms and the condition of why the symptom is related to that symptom.
The contribution of this thesis is as follows (1) Search-Based Approach can extract the Conditional Relationship in good performance (2)Conditional Relationship can help user gain more information(3) We build a medical domain Knowledge Base can be implement in NLP tools.
[1] Sun, Leilei, et al. "Data-driven Automatic Treatment Regimen Development and Recommendation." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.
[2] Feldman, Ronen, et al. "Utilizing text mining on online medical forums to predict label change due to adverse drug reactions." Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2015.
[3] M. S. Simpson, E. Voorhees, and W. Hersh. Overview of the trec 2014 clinical decision support track. In Text Retrieval Conference, TREC, 2014.
[4] A. Carlson, J. Betteridge, R.C. Wang, E.R. Hruschka Jr. and T.M. Mitchell. Coupled Semi-Supervised Learning for Information Extraction. In WSDM, 2010.
[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr. and T.M. Mitchell. Toward an Architecture for Never-Ending Language Learning. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2010.
[6] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling. Never-Ending Learning. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2015.
[7] http://wiki.dbpedia.org
[8] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, Christian Bizer. DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Published in the Semantic Web Journal, Volume 6, Number 2, 167--195, 2015, IOS Press.
[9] Goodwin, Travis R., and Sanda M. Harabagiu. "Medical Question Answering for Clinical Decision Support." Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016.
[10] Savenkov, Denis, and Eugene Agichtein. "When a knowledge base is not enough: Question answering over knowledge bases with external text data." Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2016.
[11] West, Robert, et al. "Knowledge base completion via search-based question answering." Proceedings of the 23rd international conference on World wide web. ACM, 2014.
[12] Wang, Pengwei, et al. "Learning to Extract Conditional Knowledge for Question Answering using Dialogue." Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 2016.
[13] http://www.a-hospital.com
[14] Wang, Zhichun, et al. "Building a large scale knowledge base from chinese Wiki Encyclopedia." Joint International Semantic Technology Conference. Springer Berlin Heidelberg, 2011.
[15] Li, Mingyang, et al. "Building a Large-Scale Cross-Lingual Knowledge Base from Heterogeneous Online Wikis." National CCF Conference on Natural Language Processing and Chinese Computing. Springer International Publishing, 2015.
[16] Savova, Guergana K., et al. "Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications." Journal of the American Medical Informatics Association 17.5 (2010): 507-513.
[17] https://scrapy.org
[18] https://radimrehurek.com/gensim/models/word2vec.html
[19] 140.122.184.134/DAS/thesis_index.php