Author: |
廖證傑 Liao, Cheng-Chieh |
---|---|
Thesis Title: |
雙功能金雞納鹼催化3-高醯基香豆素與亞甲基羥吲哚進行不對稱麥可-麥可反應建構螺環羥吲哚 Bifunctional Cinchona Alkaloid-Catalyzed Asymmetric Cascade Michael-Michael Reaction of 3-Homoacyl Coumarin with Methyleneoxindoles the Construction of Spirooxindoles |
Advisor: |
林文偉
Lin, Wen-Wei |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2019 |
Academic Year: | 107 |
Language: | 中文 |
Number of pages: | 340 |
Keywords (in Chinese): | 連鎖反應 、麥可/麥可反應 、螺環羥吲哚 |
Keywords (in English): | cascade reaction, Michael/Michael reaction, spirooxindole |
DOI URL: | http://doi.org/10.6345/NTNU201900072 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 129 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
螺環羥吲哚(spiroxindole)是一種特殊的骨架,出現於天然物及藥物中都很普遍,且報導指出其具有生物活性,使得化學家相繼進行深入研究。本實驗證明利用金雞鈉鹼(Cinchona alkaloid)衍生物催化羥吲哚(oxindole)衍生物,與3-高醯基香豆素(3-homoacyl coumarin)衍生物進行分子間及分子內的Michael reaction,以建構螺環羥吲哚,獲得五個相鄰的立體中心具良好產率及鏡像選擇性;同時設計起始物羥吲哚衍生物,取代基苯基(phenyl)及苯甲醯基(benzoyl group),推測在羰基(carbonyl)存在下,利用氫鍵的控制,增加選擇性,使得在優化條件下,成功得到更佳優良的鏡像選擇性。
The spirooxindole structure is a privileged scaffold that is prevalent in both natural products and synthetic bioactive molecules. Herein, we demonstrate a Cinchona alkaloid derivative catalyzed Michael/Michael cascade reaction of 3-homoacyl coumarins and arylidene or benzoylated oxindoles to construct spirooxindole derivatives. This reaction afforded the corresponding products with five contiguous stereocenters including a quaternary center in good to excellent yields with moderate to excellent enantioselectivities. The comparision between the substitutent on oxindole ring phenyl and benzoyl group, the benzoyl group has carbonyl group it shows the different results and catalyst because of the hydrogen bonding.
1. Xue, Y.-P.; Cao, C.-H.; Zheng, Y.-G.* Chem. Soc. Rev. 2018, 47, 1516.
2. Wu, Y.-F.; Tsai, Y.-F.;* Guo, J.-R.; Yu, C.-P.; Yu, H.-M.* Liao, C.-C. Org. Biomol. Chem. 2014, 12, 9345.
3. Donovan, K. A.; An, J.; Nowak, R. P.; Yuan, J. C.; Fink, E. C.; Berry, B. C.; Ebert, B. L.; Fischer, E. S.;* eLife 2018, 7, e38430.
4. Cheng, D.; Ishihara, Y.; Tan, B.;* Barbas, C. F.* ACS Catal. 2014, 4, 743.
5. Chen, X.; Duan, S.; Tao, C.; Zhai, H.;* Qiu, F. G.* Nat. Commun. 2015, 6, 7204.
6. Onishi, T., Sebahar, P. R., Williams, R. M.* Org. Lett. 2003, 5, 3135.
7. Kato, H.; Yoshida, T.; Tokue, T.; Nojiri, Y.; Hirota, H.; Ohta, T.; Williams, R. M.; Tsukamoto, S* Angew. Chem. 2007, 119, 2304.
8. Wang, Y.-H.; Avula, B.; Nanayakkara, N. P. D.; Zhao, J.; Khan, I. A.* J. Agric. Food Chem. 2013, 61, 4470.
9. Yao, P.-H.; Kumar, S.; Liu, Y.-L.; Fang, C.-P.; Liu, C.-C.; Sun, C.-M.;* ACS Comb. Sci. 2017, 19, 271.
10. Zhang, Z.-R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W.* Evidence-Based Complementary and Alternative Medicine 2015, 2015, 919616.
11. Yang, N.-N.; Shi, H.; Yu, G.; Wang, C.-M.; Zhu, C.; Yang, Y.; Yuan, X.-L.; Tang, M.; Wang, Z.-L.; Gegen, T.; He, Q.; Tang, K.; Lan, L.; Wu, G.-Y.d;* Tang, Z.-X.* Scientific Reports 2016, 6, 25657.
12. Nagao, K; Yamano, N.; Shirouchi, B.; Inoue, N.; Murakami, S.; Sasaki, T.; YanagitaA, T.* J. Agric. Food Chem. 2010, 58, 9028.
13. Simijonović, D.;* Vlachou, E.-E.; Petrović, Z. D.; Hadjipavlou-Litina, D. J.; Litinas, Κ. E.; Stanković, N.; Mihović, N.; Mladenović, M. P. Bioorganic Chemistry 2018, 80, 741.
14. Huisgen, R.* Angew. Chem. Int. Ed. 1963, 11, 633.
15. Hashimoto, T.;* Maruoka, K.* Chem. Rev. 2015, 115, 5366.
16. Fukui, K.;* Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.
17. Sustmann, R.* Pure Appl. Chem. 1974, 40, 569.
18. Hashimoto, T.;* Maruoka, K.* Chem. Rev. 2015, 115, 5366.
19. Kobayashi, S.;* Kawamura, M. J. Am. Chem. Soc. 1998, 120, 5840.
20. Yamamoto, H.;* Jiao, P.; Nakashima, D. Angew. Chem. Int. Ed. 2008, 47, 2411.
21. Mondal, M.; Wheeler, K. A.; Kerrigan, N. J.;* Org. Lett. 2016, 18, 4108.
22. Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X.;* Org. Lett. 2017, 19, 646.
23. Esteban, F.; Cieślik, W.; Arpa, E.M.; Guerrero-Corella, A.; Díaz-Tendero, S. ; Perles, J.; Fernández-Salas, J. A.; Fraile, A.;* Alemán, J.* ACS Catal. 2018, 8, 1884.
24. Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z.* J. Am. Chem. Soc. 2009, 131, 13819.
25. Kolb, H. C.; Finn, M. G.; Sharpless, K. B.* Angew. Chem. Int. Ed. 2001, 40, 2004.
26. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.* Angew. Chem. Int. Ed. 2002, 41, 2596.
27. Krasin´ski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C.* J. Am. Chen. Soc. 2005, 127, 6686.
28. T. M. V. D. Pinho e Melo, Curr. Org. Chem. 2009, 13, 1406.
29. Du, Y.; Lu, X.;* Yu, Y. J. Org. Chem. 2002, 67, 8901.
30. Liu, C.; Oblak, E. Z.; M. N.; Vander Wal, M.N.; Dilger, A. K.; Almstead, D. K.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2016, 138, 2134.
31. Marx, V. M.; Jean Burnell, D.* J. Am. Chem. Soc. 2010, 132, 1685.
32. Trost, B. M.; Huang, Z.; Murhade, G. M.* Science 2018, 362, 564.
33. Giese, S.; Kastrup, L.; Stiens, D.; West, F. G.* Angew. Chem. Int. Ed. 2000, 39, 1970.
34. Zhang, G.; Zhang, L.;* J. Am. Chem. Soc. 2008, 130, 12598.
35. Sun, M.; Zhu, Z.-Q.; Gu, L.; Wan, X.; Mei, G.-J.; Shi, F.* J. Org. Chem. 2018, 83, 2341.
36. Zhou, J.; Wang, Q.-L.; Peng, L.; Tian, F.; Xu, X.-Y.;* Wang, L.-X.* Chem. Commun. 2014, 50, 14601.
37. Song, C.E. (2009) Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis.
38. Helder, R.; Arends, R.; Bolt, W.; Hiemstra, H.; Wynberg, H.* Tetrahedron Lett. 1977, 18, 2181.
39. Houk, K.N.;* Grayson, M.N. J. Am. Chem. Soc. 2016, 138, 1170.
40. Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y.* J. Am. Chem. Soc. 2005, 127, 119.
41. McCooey, S. H.; Connon, S. J.;* Angew. Chem. Int. Ed. 2005, 44, 6367.
42. Breman, A. C.; Heijden, G. V. D.; Maarseveen, J. H. V.; Ingemann, S.; Hiemstra, H.* Chem. Eur. J. 2016, 22, 14247.
43. Hine, J.;* Chen, Y.-J. J. Org. Chem. 1987, 52, 2091.
44. Albertshofer, K.; Tan, B.; Barbas, C.F.III.* Org. Lett. 2012, 14, 1834.
45. Wang, L.-L.; Lin, P.; Bai, J.-F.; Jia, L.-N.; Luo, X.-Y.; Huang, Q.-C.; Xu, X.-Y.;* Wang, L.-X.* Chem. Commun., 2011, 47, 5593.
46. Yang, M.-C.;Peng, C.;* Huang, H.; Yang, L.; He, X.-H.; Huang, W.; Cui, H.-L.; He, G.; Han, B.* Org. Lett. 2017, 19, 6752.
47. Qi, L.-W.; Yang, Y.; Gui, Y.-Y.; Zhang, Y.; Chen, F.; Tian, F.; Peng, L.; Wang, L.-X.;* Org. Lett. 2014, 16, 6436.
48. Tan, B.; Candeias, N. R.; Barbas III, C. F.;* Nature Chem. 2011, 3, 473.
49. Sun, W.; Hong, L.; Zhu, G.; Wang, Z.; Wei, X.; Ni, J.;* Wang, R.* Org. Lett. 2014, 16, 544.
50. Chen, Y.-R.; Reddy, G. M.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W.* Chem. Commun. 2018, 54, 12702.
51. Zhao, B.-O.; Du, D.-M.* Chem. Commun. 2016, 52, 6162.
52. Kang, J.-W.; Li, X.; Chen, F.-Y.; Luo, Y.; Zhang, S.-C.; Kang, B.; Peng, C.; Tian, X.;* Han, B.* RSC Adv. 2019, 9, 12255.
53. Guo, H.-X.;* Wu, S.; Nadeau, K.; Moniz, G.A.; Caille, S. Chirality 2010, 22, 50.
54. Sibi, M. P.;* Rheault, T. R. J. Am. Chem. Soc. 2000, 122, 8873.