簡易檢索 / 詳目顯示

研究生: 彭筱君
Peng, Xiao-Jun
論文名稱: 臺灣北部造山帶磁性組構與古地磁之研究
Study of Magnetic Fabrics and Paleomagnetism Across Northern Transect of Taiwan Mountain Belt
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 臺灣北部造山帶磁感率異向性磁性組構古地磁磁黃鐵礦
英文關鍵詞: northern Taiwan mountain belt, anisotropy of magnetic susceptibility (AMS), magnetic fabric, paleogeomagnetism, pyrrhotite
論文種類: 學術論文
相關次數: 點閱:147下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁感率異向性因可作為瞭解區域應變的良好工具,已廣泛應用於造山帶演化的分析。過去研究調查指出臺灣北部造山帶的區域構造發育於最大變質溫度之前,為了瞭解造山過程中溫度和變形間的關聯性,本研究沿北橫公路至太平山採集低變質度的定向樣本,除了以磁感率異向性實驗、溫度-磁感率實驗及磁滯曲線來分析磁性組構外,並以熱去磁方法獲得古地磁相關資料,重建早期弧陸碰撞的北部造山帶應變演化過程。
    研究結果顯示磁感率橢球體的K1軸多呈東北-西南向,意味著擠壓方向大致和現今的板塊運動方向相符,而磁性參數中的異向性及變形強度由西向東逐漸增強,且在靠近斷層帶處數值相對較高。根據前人之磁性組構的分類,應變由小至大可分為TypeⅠ-Ⅵ六類,利用臺灣北部造山帶採樣剖面的地質特性及磁性組構分佈的結果可將研究區分為A至D四個構造區域,其特徵分述如下:(A) 西部麓山帶至劈理發育處-此區開始受應變作用影響,K1趨於集中在東北-西南向,磁感率橢球體偏向扁平狀,磁性組構應屬TypeⅡ。(B) 劈理發育處至檜山斷層下盤-K3開始受劈理影響,磁感率橢球體主要為扁平狀,磁性組構介於TypeⅡ-Ⅲ間。(C) 檜山斷層下盤至梨山斷層-此區磁性組構於三光向斜至中嶺背斜開始呈現雪茄狀,K3明顯受劈理發育而呈帶狀分布,磁性組構介於TypeⅢ-Ⅳ。(D) 梨山斷層至太平山-受強烈劈理作用,推測應增強至TypeⅣ以上,雖異向性與變形強度較大,但K3仍集中於鉛直方向而非水平方向,應是此區所受動力機制和雪山山脈不同,導致應變過程不連續。
    於雪山山脈北部的中嶺背斜進行殘磁之褶皺測試,由熱去磁結果顯示此區磁黃鐵礦所記錄之特徵殘磁時期為褶皺事件之後,可推論底侵作用可能為增溫的方式,而溫度降至磁黃鐵礦的居禮溫度之下便無明顯的褶皺作用,之後雪山山脈逐漸抬升冷卻,同時受到剝蝕作用影響,最終形成現今所見西村層出露之地貌。

    Anisotropy of magnetic susceptibility (AMS) can be regarded as a useful tool for understanding the finite strain pattern of regional deformation so that it is generally applied to decipher the evolution of mountain belt. Previous studies suggested that the overprint of maximum metamorphic temperature postdated the regional deformation across the northern Taiwan mountain belt. In order to evaluate the interrelationship between maximum metamorphic temperature and deformation during mountain building, we collected oriented samples of low-grade metamorphic rocks from the Northern Cross-Island Highway to the western Backbone Range. In addition to the magnetic fabrics inferred from the study of magnetic susceptibility anisotropy, experiments of temperature-function magnetic susceptibility, hysteresis loop, and thermal demagnetization were also conducted to gather paleogeomagnetism in data. This study can provide insights into reconstructing the strain evolution of northern mountain belt during late Cenozoic arc-continental collision.
    Current results show that NE-SW orientation of K1 axes of magnetic ellipsoids indicates northwest-southeast compression, which is consistent with current plate convergence direction. Both AMS and deformation intensity increase from the west to the east with abnormally strong intensity and oblate strain near the major reverse faults, suggesting the amount of final strain increases across the mountain belt. According to the characteristics of the magnetic fabrics, magnetic fabrics can be classified as six stages from Type I to VI with increasing strain. The study area can be divided into four fabric domains A to D based on geological aspects and characteristics of magnetic fabrics across northern Taiwan mountain belt. Domain A is from the West Foothills to the cleavage front. Rocks in this area begin to be influenced by horizontal tectonic strain. K1 of ellipsoid is in northeast-southwest orientation, indicating NW-SW compression. The shape of ellipsoid is oblate. Magnetic fabric belongs to Type II. Domain B is bounded by the cleavage front and the footwall of the Kuaishan Fault. The distribution of K3 orientation started to be affected by cleavage. The shape of ellipsoid is mainly oblate. Magnetic fabric is classified as Type II-III. Domain C is located between the footwall of the Kuaishan Fault to the Lishan Fault. The shape of ellipsoid from the Sankuan Syncline to the Chungling Anticline gradually converts to prolate. The distribution of K3 becomes a girdle in NW-SE orientation that clearly is influenced by cleavage development. Magnetic fabric is treated as Type III-IV. Domain D is bounded by the Lishan Fault and the Taipingshan. Due to distinct cleavage development, tectonic strain in this domain presumably should be augmented to more than TypeIV. Though both anisotropy and deformation intensity are increased, the direction of K3 is still concentrated in vertical, not in horizontal. The result might be the reflective of discontinuous strain response to different kinematic mechanisms between the Backbone Range and the Hsueshan Range.
    Thermopaleogeomagnetic records of pyrrhotite remanence on both limbs of the Chungling Anticline of northern Hsueshan Range failed the fold test, indicating the existence of post-fold exhumation. It means underplating could be the mechanism to form dynamic metamorphism and while the metamorphic temperature was cooled down below the Curie temperature 320℃ of pyrrhotite, there was no remarkable folding deformation anymore. After that, the Hsueshan Range was uplifted passively and eroded to crop out the Hsitsun Formation.

    誌 謝 I 中文摘要 II Abstract III 目 錄 V 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 前人研究 4 第二章 地質背景 9 2.1 臺灣地體構造 9 2.2 區域地質概況 11 2.2.1 岩性 11 2.2.2 地層 11 2.2.3 地質構造 13 第三章 研究方法 17 3.1 野外採樣 18 3.2 樣本處理 19 3.3 磁感率 21 3.4 磁性礦物實驗分析 25 3.4.1 溫度-磁感率實驗 25 3.4.2 磁滯曲線 26 3.5 古地磁之量測與方法 29 3.5.1 自然殘磁 29 3.5.2 熱去磁 30 3.5.3 特徵殘磁分析 30 3.5.4 褶皺測試 31 第四章 結果 33 4.1 磁感率量測結果 33 4.1.1 應變方向分析 33 4.1.2 磁學參數變化分析 34 4.1.3 磁性組構演化歷程 35 4.2 溫度-磁感率實驗 41 4.3 磁滯曲線 43 4.4 去磁與褶皺測試 46 第五章 雪山山脈造山模式與討論 51 5.1 以磁性組構探討雪山山脈應變情形 51 5.2 中嶺背斜之褶皺測試 55 5.2.1 褶皺測試結果與示意圖 55 5.2.2 磁黃鐵礦來源討論 56 5.2.3 冷卻年代計算 58 5.3 雪山山脈形成過程之討論 59 第六章 結論 61 參考文獻 63 附錄一 熱去磁實驗之殘磁強度與溫度 72 附錄二 熱去磁之特徵殘磁(270-340℃)相關資料 76 附錄三 口試委員提問與答覆 77

    英文部分
    Angelier, J. (1986) Geodynamics of the Eurasia-Philippine Sea plate boundary. Special Issue, Tectonophysics, 125, IX-X.
    Aubourg, C., Hebert, R., Jolivet, L., and Cartayrade, G. (2000) The magnetic fabric of metasediments in a detachment shear zone: the example of Tinos Island (Greece). Tectonophysics, 321, 219-236.
    Aubourg, C., Smith, B., Bakhtari, H., Guya, N., Eshraghi, S.A., Lallemant, S., Molinaro, M., Braud, X., and Delaunay, S. (2004) Post-Miocene shortening pictured by magnetic fabric across the Zagros-Makran Syntaxis. In "Orogenic curvature: integrating paleomagnetic and structural analyses." (A. J. Sussman, and A. B. Weil, Eds.). Geological Society of America special paper, Boulder, Colorado, 383, 17-40.
    Aubourg, C., Pozzi, J.P., and Kars, M. (2012) Burial, claystones remagnetization and some consequences for magnetostratigraphy. Geological Society, London, Special Publications 371(1), 181-188.
    Averbuch, O., Frizon de Lamotte, D., and Kissel, C. (1992) Magnetic fabrics as a structural indicator of deformation path within a fold thrust structure: a test case from the Corbières, NE Pyrenees, France. Journal of Structural Geology, 14, 461-474.
    Bakhtari, H., Frizon de Lamotte, D., Aubourg, C., and Hassanzadeh, J. (1998) Magnetic fabric of Tertiary sandstones from the Arc of Fars (Eastern Zagros, Iran). Tectonophysics, 284, 299-316.
    Balsley, J.R. and Buddington, A.F. (1960) Magnetic susceptibility anisotropy and fabric of some Adirondack granites and orthogneisses. American Journal Science, 258A, 6-20.
    Barr, T.D. and Dahlen, F.A. (1989) Brittle frictional mountain building: 2. Thermal structure and heat budget. Journal of Geophysical Research, 94, 3923-3947.
    Barr, T.D., Dahlen, F.A., and McPhail, D.C. (1991) Brittle frictional mountain building: 3. Low-grade metamorphism. Journal of Geophysical Research, 96, 10,319-10338.
    Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.G., Chan, Y.C., and Goffe, B. (2007) Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26, TC6001, doi:10.1029/2006TC002064.
    Borradaile, G.J. and Tarling, D.H. (1981) The influence of deformation mechanisms on magnetic fabrics in weakly deformed rocks. Tectonophysics, 77, 151-168.
    Borradaile, G.J. (1987) Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophysics, 138, 327-329.
    Borradaile, G.J. (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 20.
    Borradaile, G.J. and Henry, B. (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Review, 42, 49-93.
    Borradaile, G.J. and Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. Geological Society, Special Publications, 238, 299-360.
    Butler, R.F. (1991) Paleomagnetism: Magnetic Domains to Geologic. Terranes, 336.
    Callot, J.P., Robion, P., Sassi, W., Guiton, M.L.E., Faure, J.L., Daniel, J.M., Mengus, J.M., and Schmitz, J. (2010) Magnetic characterisation of folded aeolian sandstones: Interpretation of magnetic fabrics in diamagnetic rocks. Tectonophysics, 495, 230-245, doi:10.1016/j.tecto.2010.09.020.
    Cande, S.C. and Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100, 6093-6095.
    Carpenter, R.H. (1974) Pyrrhotite isograd in southeastern Tennessee and southwestern North Carolina. Geological Society of America Bulletin, 85, 451-456.
    Chai, B.H.T. (1972) Structure and tectonic evolution of Taiwan. American Journal of Science, 272, 389-422.
    Chapple, W.M. (1978) Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin, 89, 1189-1198.
    Chen, C.T., Chan, Y.C., Lu, C.Y., Simoes, M., and Beyssac, O. (2011) Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt. Terra Nova, 23(2), 85-91.
    Chen, C.T., Chan, Y.C., Beyssac, O., Lu, C.Y., Chen, Y.G., Teng, L.S., and Lee, J.C. (2013) Presence and role of basal accretion on wedge growth: Thermal-metamorphic constraints on kinematic evolution of the Taiwanese Slate Belt. Taiwan Geosciences Assembly, U5-5A-02, May 13-17, Taoyuan.
    Clark, M.B., Fisher, D.M., Lu, C.Y., and Chen, C.H. (1993) Kinematic analyses of theHsuehshan Range, Taiwan: A large scale pop-up structure. Tectonics, 12, 205-217.
    Crouzet, C., Gautam, P., Schill, E., and Appel, E. (2003) Multicomponent magnetization in Western Dolpo (Tethyan Himalaya, Nepal): tectonic implications. Tectonophysics, 377, 179-196.
    Dahlen, F.A. and Barr, T.D. (1989) Brittle frictional mountain building 1. Deformation and mechanical energy budget. Journal of Geophysical Research, 94, 3906-3922.
    Davis, D., Suppe, J., and Dahlen, F.A. (1983) Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153-1172.
    Dunlop D. (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, Journal of Geophysical Research, 107, B3, 22.
    Flinn, D. (1962) On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society of London, 118, 385-433.
    Fuller, C.W., Willett, S.D., Fisher, D., and Lu, C.Y. (2006) A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1-4), 24.
    Graham, J.W. (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In Steinhart, J.S., and Smith, T.J. (eds.), The Earth Beneath the Continents. American Geophysical Union, 627-648.
    Hall, A.J. (1986) Pyrite-pyrrhotine redox reactions in nature. Mineralogical Magazine, 50, 223-229.
    Horng, C.S., Huh, C.A., Chen, K.H., Lin, C.H., Shea, K.S., and Hsiung, K.H. (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13, Q08Z47, doi:10.1029/ 2012GC004195.
    Housen, B.A. and van der Pluijm, B.A. (1990) Chlorite control of correlations between strain and anisotropy of magnetic susceptibility. Physics of the Earth and Planetary Interiors, 61, 315-323.
    Housen, B.A. and van der Pluijm, B.A. (1991) Slaty cleavage development and magnetic anisotropy fabrics. Journal of Geophysical Research, 96, 9937-9946.
    Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82.
    Hunt, C.P., Moskowitz, B.M., and Banerjee, S.K. (1995) Magnetic properties of rocks and minerals: in rock physics and phase relations. In Ahrens, T.J. (eds.), American Geophysical Union, 189-204.
    Jelinek, V. (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22, 50-62.
    Jelinek, V. (1981) Characterization of the magnetic fabric of the rocks. Tectonophysics, 79, 63-67.
    Kars, M., Aubourg, C., Labaume, P., Berquó, T.S., and Cavailhes, T. (2014) Burial Diagenesis of Magnetic Minerals: New Insights from the Grès d’Annot Transect (SE France). Minerals, 4, 667-689.
    Kligfield, R., Owens, W.H., and Lowrie, W. (1981) Magnetic susceptibility anisotropy, strain and progressive deformation in Permian sediments from the Maritime Alps (France). Earth and Planetary Science Letters, 55, 181-189.
    Lee, J.C., Angelier, J., and Chu, H.T. (1997) Polyphase history and kinematics of complex major fault zone in the Taiwan mountain belt: the Lishan Fault. Tectonophysics, 274, 97-116
    Lee, T.Q. (1988) Magnetic fabric used as stress indicator: a test for green rocks of the Tananao Schist, Taiwan. Proceedings of the Geological Society of China, 31, 1, 226-231.
    Levi, T. and Weinberger, R. (2011) Magnetic fabrics of diamagnetic rocks and the strain field associated with the Dead Sea fault, northern Israel. Journal of Structural Geology, 33, 566-578.
    Liu, T.K., Hsieh, S., Chen, Y.G., and Chen, W.S. (2001) Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186, 45-56.
    Lu, C.Y. and Hsu, K.J. (1992) Tectonic evolution of the Taiwan mountain belt. Petroleum Geology of Taiwan, 27, 21-46.
    Maher, B.A. and Thompson, R. (2010) Quaternary Climates, Environments and Magnetism. 412.
    Nagata, T. (1961) Rock Magnetism. Maruzen, Tokyo, 350.
    Parés, J.M. and van der Pluijm, B.A. (2003) Magnetic fabrics in low-strain mudrocks: AMS of pencil structures in the Knobs Formation, mudrocks. Journal of Structural Geology, 25, 1349-1358.
    Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42, 209-226.
    Seno, T., Stein, S., and Gripp, A.E. (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research, 98, 17941-17948.
    Shyu, J.B.H., Sieh, K., and Chen, Y.G. (2005) Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233, 167-177.
    Sibuet, J.C. and Hsu, S.K. (1997) Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274, 221-251.
    Simoes, M., Avouac, J.P., Beyssac, O., Goffe, B., Farley, K.A., and Chen, Y.G. (2007) Mountain building in Taiwan: a thermokinematic model. Journal of Geophysical Research, 112, B11405.
    Singh, J., Sanderson, D.J., and Tarling, D.H. (1975) The magnetic susceptibility anisotropy of deformed rocks from north Cornwall, England. Tectonophysics, 27, 141-153.
    Stacey, F.D., Joplin, G., and Lindsay, J. (1960) Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Pure and Applied Geophysics, 47, 30-40.
    Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67-89.
    Teng, L.S., Wang, Y., Tang, C.H., Huang, C.Y., Huang, T.C., Yu, M.S., and Ke, A. (1991) Tectonic aspects of the Paleogene deposition basin of northern Taiwan. Proceedings of the Geological Society of China, 34, 313-336.
    Teng, L.S. (1996) Extensional collapse of the northern Taiwan mountain belt. Geology, 24, 949-952.
    Tillman, K.S. and Byrne, T.B. (1995) Kinematic analysis of the Taiwan slate belt. Tectonics, 14, 322-341.
    Toulmin, P. and Barton, P.B. (1964) A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta, 28, 641-671.
    Willett, S.D., Slingerland, R., and Hovius, N. (2001) Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science, 301, 455-485.
    Wopenka, B. and Pasteris, J.D. (1993) Structural characterization of kerogens to granulite–facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist 78, 533-557.
    Yu, S.B., Chen, H.Y., and Kuo, L.C. (1997) Velocity field of GPS Stations in the Taiwan area. Tectonophysics, 274, 41-59.
    Zijderveld, J.D.A. (1967) A.C. demagnetization of rocks: analysis of results. In Collinson, D.W., Creer, K.M., and Runcorn, S.K. (eds.), Methods in Palaeomagnetism, Amsterdam: Elsevier, 254-286.

    中文部分
    王信雄(2011)雪山山脈北段剝露歷史及其構造意義。國立中正大學應用地球物理與環境科學研究所碩士論文,共46頁。
    朱傚祖、盧佳遇、李建成、林能通(1996)擠縮、橫斷、背衝及伸張大地構造:以雪山山脈為例。地質,第15卷,第2期,第61-80頁。
    何春蓀(1986)臺灣地質概論:臺灣地質圖說明書(增訂第二版)。經濟部中央地質調查所,共164頁。
    呂懿德(1989)臺灣北部褶皺衝斷帶之古地磁研究暨其構造上意義。國立臺灣大學地質學研究所博士論文,共226頁。
    余水倍、胡植慶(2002)臺灣-呂宋島弧的現今板塊運動。臺灣大地構造,第131-166頁。
    李定原(2004)臺灣雪山山脈北段及其他四個地點磷灰石核飛跡定年研究。國立臺灣大學地質學研究所碩士論文,共73頁。
    李勇、李海燕、白凌燕、秦炎福、官邦貴、吕躍鳳(2009)發育於石英岩之上的表土磁學性質及其環境磁學意義。土壤,第41卷,第1期,第60-66頁。
    周瑞燉(1990)臺灣中央山脈及雪山山脈之古第三紀地層。經濟部中央地質調查所特刊,第四號,第177-192頁。
    林啟文、林偉雄(1995)五萬分之一臺灣地質圖說明書,圖幅第十五號,三星。經濟部中央地質調查所,共55頁。
    林啟文、張育仁(2014)五萬分之一臺灣地質圖說明書,圖幅第八號,桃園第二版。經濟部中央地質調查所,共89頁。
    洪崇勝、陳國航、林俊宏(2011)臺灣北部橫貫公路低度變質岩之岩石磁學兼論雪山山脈與中央山脈之地層對比。經濟部中央地質調查所特刊,第二十五號,第167-179 頁。
    郭怡君(1994)北橫公路沿線變質泥質岩中鏡煤素反射率之研究。國立臺灣師範大學地球科學所碩士論文,共50頁。
    陳肇夏、王京新、鐘三雄(1994)鉀雲母結晶度在臺灣雪山及中央山脈地層與構造研究上之應用。經濟部中央地質調查所特刊第八號,第261-284頁。
    陳肇夏、王京新(1995)臺灣變質相圖說明(第二版)。經濟部中央地質調查所特刊,第 2 號,共51頁。
    陳培源(2008)臺灣地質。臺灣省應用地質技師公會,共500頁。
    黃鑑水、劉桓吉、張憲卿、高銘健(1994)臺灣雪山山脈地層沉積研究(一)。經濟部中央地質調查所特刊,第8號,第65-81頁。
    詹新甫(1976)臺灣雪山山脈之褶皺與塊體運動。臺灣省地質調查所彙刊,第二十五號,第29-34頁。
    塗明寬(1990)巴陵層之探討。經濟部中央地質調查所特刊第四號,第77-84頁。
    鄧屬予(1999)臺灣新生代大地構造。二十一世紀臺灣地球科學研究系列研究會(一),中國地質學會出版,第23-66頁。
    鄧屬予(2007)臺灣第四紀大地構造。經濟部中央地質調查所特刊,第十八號,共24頁。
    謝雪莉(1990)臺灣島數條東西向剖面之核飛跡定年研究。國立臺灣大學地質研究所碩士論文,共134頁。
    謝凱旋、黃敦友(2003)臺灣第三系的地層層序。臺灣鑛業,第55卷,第4期,第17-32頁。
    羅偉,土場圖幅地區地質草圖。(未發表資料)

    下載圖示
    QR CODE