簡易檢索 / 詳目顯示

研究生: 陳怡辰
I-Cheng Chen
論文名稱: 第八型脊髓小腦運動失調症分子致病機轉之研究
Molecular Genetic studies of spinocerebellar ataxia type 8
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 93
中文關鍵詞: 脊髓小腦運動失調症第八型脊髓小腦運動失調症
英文關鍵詞: spinocerebellar ataxia, spinocerebellar ataxia type 8
論文種類: 學術論文
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦運動失調症 (Spinocerebellar ataxias)為一群顯性遺傳的神經退化性疾病,患者小腦及腦幹區域發生漸進式的神經退化,其中第八型脊髓小腦運動失調症 (SCA8)與染色體13q21位置的ATXN8OS基因3’端非轉譯區CTG三核苷重複擴增相關;除此之外,目前根據前人研究顯示SCA8疾病除了與ATXN8OS CTG方向的擴增有關,其反向ATXN8基因之CAG擴增也可能扮演重要的角色。目前SCA8的致病機轉尚未十分明確,本論文主要核心為研究SCA8疾病之遺傳與分子機轉。首先,我們利用人類胚胎腎細胞 (Human embryonic kidney 293 cell lines)建立可被誘導並穩定表現包含不同長度CTG擴增的ATXN8OS細胞株並進行ATXN8OS RNA表現之研究,實驗結果顯示帶有較長重複擴增之細胞,其ATXN8OS RNA被誘導表現的倍數較高,可能是由於其RNA比較穩定所導致。利用螢光原位雜交技術,我們也觀察到在帶有較長重複擴增之細胞中有RNA foci的形成。本論文的第二部份為檢測ATXN8OS、ATXN8及KLHL1 RNA在正常個體及ATXN8OS CTG擴增病人淋巴細胞株 (lymphoblastoid cell lines)中之表現,實驗結果發現在病人之淋巴細胞中ATXN8 RNA表現量比正常人高並達顯著差異,推測可能與存在ATXN8啟動子中的-62 G/A多型性點有關。另一方面,雖然之前的研究認為ATXN8OS基因不會進行轉譯,但我們實驗室的研究證實了ATXN8OS基因中的開放解讀架構 (open reading frame, ORF)可以透過特殊IRES (internal ribosome entry segment)的轉譯活性製造出蛋白質,因此,ATXN8OS ORF蛋白質轉譯的調控機制以及ORF蛋白質在病理機制當中可能扮演的角色亦是本論文著重的議題。本論文中我們利用ATXN8OS融合EGFP基因證實了ATXN8OS RNA具有轉譯的能力,除此之外我們利用ATXN8OS ORF蛋白質的抗體研究ORF蛋白質在不同細胞株中的表現,並更進一步利用質譜技術分析ORF蛋白質之胺基酸序列。我們也發現在病人的淋巴細胞株中,ATXN8OS ORF蛋白質的表現量高於正常人。預期本論文的實驗結果,將有助於了解SCA8的致病機轉,找尋適當的治療目標,並可以將結果應用到其他相關的神經退化性疾病中。

    The autosomal dominant spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases caused by a progressive degeneration of the cerebellum and brainstem. Among the SCAs, spinocerebellar ataxia type 8 (SCA8) involves the expression of a CTG/CAG expansion mutation from opposite strands producing CUG expansion transcripts (ATXN8OS) and a polyglutamine expansion protein (ATXN8). The pathogenic mechanism of ATXN8OS expansion is still unknown. The main purpose of this present proposal is to dissect the possible factors involved in SCA8 pathogenesis. Firstly, the stably induced cell lines expressing 0, 23, 88 and 157 CR exhibit low levels of ATXN8OS expression without doxycycline induction, and a repeat length-dependent repression of ATXN8OS expression was notable. Addition of doxycycline leads to 25~50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability. RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR. Our results demonstrate that the expanded CUG-repeat tracts may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms. Secondly, ATXN8 expression level is significantly higher in lymphoblastoid cells with SCA8 large alleles than that of the control cells. Our results suggest that ATXN8 gene -62 G/A polymorphism may be functional in modulating ATXN8 expression. Lastly, although reported non-coding, existence of IRES (internal ribosome entry segment) activity in the 5’ UTR sequence of ATXN8OS has been demonstrated in our previous studies. Expression of chimeric constructs with an EGFP gene fused in-frame to ATXN8OS ORF demonstrated ATXN8OS is translatable and the ORF protein formed aggregates and co-localized with mitochondria. Moreover, the ORF expression was validated in different human cells using ORF antiserum. ATXN8OS ORF was further confirmed by LC-MS/MS. The expression of ORF protein was significantly higher in lymphoblastoid cells carrying expanded ATXN8OS. The results of this study may suggest a broader hypothesis for further research in explaining the expanded CTG leading to neuronal dysfunction in SCA8.

    Index.................................................. I Abstract (Chinese)..................................... IV Abstract............................................... VI List of figures and tables............................. VIII Introduction........................................... 1 Spinocerebellar ataxias (SCAs)......................... 1 Spinocerebellar ataxia type 8 (SCA8)................... 2 Plausible pathogenesis of SCA8......................... 3 The internal ribosome entry site (IRES) activity of ATXN8OS mRNA................................................... 5 Cellular model approach for neurodegenerative diseases. 7 Specific Aims.......................................... 9 Materials and methods.................................. 11 I. Analysis of ATXN8OS stably induced HEK-293 cell lines11 Flp-In T-REx 293 cell lines stably expressing ATXN8OS cDNA................................................... 11 RNA isolation.......................................... 11 Real-time RT-PCR (Quantitative RT- PCR)................ 12 Western blot analysis.................................. 13 Immunocytochemical staining............................ 13 Fluorescent in situ hybridization (FISH)............... 14 RNA clean-up........................................... 14 Microarray analysis.................................... 15 Protein sample preparation............................. 15 Proteomic analysis..................................... 16 II. Analysis of ATXN8OS lymphoblastoid cell models..... 17 Lymphoblastoid cell lines.............................. 17 Real-time RT-PCR (Quantitative RT-PCR)................. 18 Genotyping, sequencing and RFLP analysis of ATXN8OS exon A -62 G/A SNP............................................. 18 III. Analysis of the IRES activity of ATXN8OS RNA and identification of ATXN8OS ORF protein.................. 19 cDNA cloning of IRES initiation trans-acting factors... 19 Transfection........................................... 20 Dual luciferase reporter assay......................... 20 In vitro transcription................................. 21 RNA-binding assays and protein identification.......... 21 Site-directed mutagenesis.............................. 22 Fluorescence activated cell sorting (FACS) analysis.... 23 ATXN8OS ORF-EGFP constructs............................ 23 HEK-293 cell cultivation and transfection.............. 24 MitoTracker staining................................... 25 LysoTracker staining................................... 25 Confocal microscopy.................................... 25 Real-time RT-PCR (Quantitative RT-PCR)................. 26 Western blot analysis.................................. 26 Lymphoblastoid and neuroblastoma cell lines............ 27 GST-ORF construct and antiserum........................ 27 ORF identification..................................... 28 Results................................................ 30 I. Analysis of ATXN8OS stably induced HEK-293 cell lines.................................................. 30 Repeat length-related change in ATXN8OS expression..... 30 Repeat length-dependent repression of HaloTag gene located next to ATXN8OS cDNA gene.............................. 31 Increased ATXN8OS transcript stability and ribonuclear foci formation with CUG repeat expansion.................... 32 Identification of targets affected by mutant ATXN8OS using microarray and proteomic approaches.................... 33 II. Analysis of ATXN8OS lymphoblastoid cell models..... 35 Analysis of ATXN8OS, ATXN8 and KLHL1 expression........ 35 ATXN8 -62 G/A promoter SNP............................. 36 III. Analysis of the IRES activity of ATXN8OS RNA and identification of ATXN8OS ORF protein.................. 37 Possible factors involved in regulation of ATXN8OS RNA IRES activity............................................... 37 Identification of the ribosome entry window within ATXN8OS RNA.................................................... 38 ATXN8OS ORF-EGFP constructs............................ 39 ORF-EGFP expression.................................... 39 ORF-EGFP aggregation................................... 40 ORF immunodetection.................................... 41 ORF identification..................................... 41 ORF expression and SCA8................................ 42 Discussion............................................. 43 ATXN8OS stably induced HEK-293 cell models............. 43 ATXN8OS lymphoblastoid cell models..................... 47 IRES activity of ATXN8OS RNA and identification of ATXN8OS ORF protein............................................ 49 References............................................. 54

    Abramczyk, D., Tchorzewski, M., and Grankowski, N. (2003). Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast (Chichester, England) 20, 1045-1052.
    Amack, J.D., Paguio, A.P., and Mahadevan, M.S. (1999). Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Human molecular genetics 8, 1975-1984.
    Anborgh, P.H., Godin, C., Pampillo, M., Dhami, G.K., Dale, L.B., Cregan, S.P., Truant, R., and Ferguson, S.S. (2005). Inhibition of metabotropic glutamate receptor signaling by the huntingtin-binding protein optineurin. The Journal of biological chemistry 280, 34840-34848.
    Andres, A.M., Soldevila, M., Saitou, N., Volpini, V., Calafell, F., and Bertranpetit, J. (2003). Understanding the dynamics of Spinocerebellar Ataxia 8 (SCA8) locus through a comparative genetic approach in humans and apes. Neurosci Lett 336, 143-146.
    Aromolaran, K.A., Benzow, K.A., Koob, M.D., and Piedras-Renteria, E.S. (2007). The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 145, 841-850.
    Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124.
    Benzow, K.A., and Koob, M.D. (2002). The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mamm Genome 13, 134-141.
    Bruening, W., and Pelletier, J. (1996). A non-AUG translational initiation event generates novel WT1 isoforms. The Journal of biological chemistry 271, 8646-8654.
    Brusco, A., Cagnoli, C., Franco, A., Dragone, E., Nardacchione, A., Grosso, E., Mortara, P., Mutani, R., Migone, N., and Orsi, L. (2002). Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1-3, 6 and 7 CAG expansions. J Neurol 249, 923-929.
    Burstyn-Cohen, T., Tzarfaty, V., Frumkin, A., Feinstein, Y., Stoeckli, E., and Klar, A. (1999). F-Spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 23, 233-246.
    Carlson, K.M., Andresen, J.M., and Orr, H.T. (2009). Emerging pathogenic pathways in the spinocerebellar ataxias. Current opinion in genetics & development 19, 247-253.
    Castegna, A., Thongboonkerd, V., Klein, J.B., Lynn, B., Markesbery, W.R., and Butterfield, D.A. (2003). Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 85, 1394-1401.
    Cellini, E., Nacmias, B., Forleo, P., Piacentini, S., Guarnieri, B.M., Serio, A., Calabro, A., Renzi, D., and Sorbi, S. (2001). Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Archives of neurology 58, 1856-1859.
    Chang, K.J., and Wang, C.C. (2004). Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. The Journal of biological chemistry 279, 13778-13785.
    Chen, D.H., Brkanac, Z., Verlinde, C.L., Tan, X.J., Bylenok, L., Nochlin, D., Matsushita, M., Lipe, H., Wolff, J., Fernandez, M., et al. (2003). Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 72, 839-849.
    Chen, I.C., Lin, H.Y., Lee, G.C., Kao, S.H., Chen, C.M., Wu, Y.R., Hsieh-Li, H.M., Su, M.T., and Lee-Chen, G.J. (2009). Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci. BMC molecular biology 10, 9.
    Chen, S.J., Lin, G., Chang, K.J., Yeh, L.S., and Wang, C.C. (2008). Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. The Journal of biological chemistry 283, 3173-3180.
    Clemens, M.J., and Bommer, U.A. (1999). Translational control: the cancer connection. The international journal of biochemistry & cell biology 31, 1-23.
    Clemens, M.J., Bushell, M., Jeffrey, I.W., Pain, V.M., and Morley, S.J. (2000). Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell death and differentiation 7, 603-615.
    Creancier, L., Morello, D., Mercier, P., and Prats, A.C. (2000). Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. The Journal of cell biology 150, 275-281.
    David, G., Abbas, N., Stevanin, G., Durr, A., Yvert, G., Cancel, G., Weber, C., Imbert, G., Saudou, F., Antoniou, E., et al. (1997). Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature genetics 17, 65-70.
    Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H., and Housman, D.E. (1997). Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proceedings of the National Academy of Sciences of the United States of America 94, 7388-7393.
    Day, J.W., Schut, L.J., Moseley, M.L., Durand, A.C., and Ranum, L.P. (2000). Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55, 649-657.
    Ebralidze, A., Wang, Y., Petkova, V., Ebralidse, K., and Junghans, R.P. (2004). RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science (New York, NY 303, 383-387.
    Fernandez, J., Bode, B., Koromilas, A., Diehl, J.A., Krukovets, I., Snider, M.D., and Hatzoglou, M. (2002a). Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. The Journal of biological chemistry 277, 11780-11787.
    Fernandez, J., Yaman, I., Mishra, R., Merrick, W.C., Snider, M.D., Lamers, W.H., and Hatzoglou, M. (2001). Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. The Journal of biological chemistry 276, 12285-12291.
    Fernandez, J., Yaman, I., Sarnow, P., Snider, M.D., and Hatzoglou, M. (2002b). Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. The Journal of biological chemistry 277, 19198-19205.
    Ge, Y.S., Teng, W.Y., and Zhang, C.D. (2009). Protective effect of cyclophilin A against Alzheimer's amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells. Chinese medical journal 122, 716-724.
    Greene, E., Mahishi, L., Entezam, A., Kumari, D., and Usdin, K. (2007). Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic acids research 35, 3383-3390.
    Gurtu, V., Yan, G., and Zhang, G. (1996). IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochemical and biophysical research communications 229, 295-298.
    Hahm, B., Kim, Y.K., Kim, J.H., Kim, T.Y., and Jang, S.K. (1998). Heterogeneous nuclear ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C virus. Journal of virology 72, 8782-8788.
    Handa, V., Yeh, H.J., McPhie, P., and Usdin, K. (2005). The AUUCU repeats responsible for spinocerebellar ataxia type 10 form unusual RNA hairpins. The Journal of biological chemistry 280, 29340-29345.
    Hann, S.R., Dixit, M., Sears, R.C., and Sealy, L. (1994). The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes & development 8, 2441-2452.
    Harding, A.E. (1993). Clinical features and classification of inherited ataxias. Advances in neurology 61, 1-14.
    He, Y., Zu, T., Benzow, K.A., Orr, H.T., Clark, H.B., and Koob, M.D. (2006). Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26, 9975-9982.
    Hellen, C.U., and Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & development 15, 1593-1612.
    Ho, A., and Sudhof, T.C. (2004). Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proceedings of the National Academy of Sciences of the United States of America 101, 2548-2553.
    Holley, S.L., Rajagopal, R., Hoban, P.R., Deakin, M., Fawole, A.S., Elder, J.B., Elder, J., Smith, V., Strange, R.C., and Fryer, A.A. (2006). Polymorphisms in the glutathione S-transferase mu cluster are associated with tumour progression and patient outcome in colorectal cancer. International journal of oncology 28, 231-236.
    Holmes, S.E., O'Hearn, E.E., McInnis, M.G., Gorelick-Feldman, D.A., Kleiderlein, J.J., Callahan, C., Kwak, N.G., Ingersoll-Ashworth, R.G., Sherr, M., Sumner, A.J., et al. (1999). Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nature genetics 23, 391-392.
    Houseley, J.M., Wang, Z., Brock, G.J., Soloway, J., Artero, R., Perez-Alonso, M., O'Dell, K.M., and Monckton, D.G. (2005). Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Human molecular genetics 14, 873-883.
    Hui, J., Reither, G., and Bindereif, A. (2003a). Novel functional role of CA repeats and hnRNP L in RNA stability. RNA (New York, NY 9, 931-936.
    Hui, J., Stangl, K., Lane, W.S., and Bindereif, A. (2003b). HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nature structural biology 10, 33-37.
    Ikeda, Y., Dalton, J.C., Moseley, M.L., Gardner, K.L., Bird, T.D., Ashizawa, T., Seltzer, W.K., Pandolfo, M., Milunsky, A., Potter, N.T., et al. (2004). Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet 75, 3-16.
    Ikeda, Y., Dick, K.A., Weatherspoon, M.R., Gincel, D., Armbrust, K.R., Dalton, J.C., Stevanin, G., Durr, A., Zuhlke, C., Burk, K., et al. (2006). Spectrin mutations cause spinocerebellar ataxia type 5. Nature genetics 38, 184-190.
    Ikeda, Y., Shizuka-Ikeda, M., Watanabe, M., Schmitt, M., Okamoto, K., and Shoji, M. (2000a). Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci 182, 76-79.
    Ikeda, Y., Shizuka, M., Watanabe, M., Okamoto, K., and Shoji, M. (2000b). Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 54, 950-955.
    Ito, H., Kawakami, H., Wate, R., Matsumoto, S., Imai, T., Hirano, A., and Kusaka, H. (2006). Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats. Neurology 67, 1479-1481.
    Izumi, Y., Maruyama, H., Oda, M., Morino, H., Okada, T., Ito, H., Sasaki, I., Tanaka, H., Komure, O., Udaka, F., et al. (2003). SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet 72, 704-709.
    Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of virology 62, 2636-2643.
    Jardim, L.B., Silveira, I., Pereira, M.L., Ferro, A., Alonso, I., do Ceu Moreira, M., Mendonca, P., Ferreirinha, F., Sequeiros, J., and Giugliani, R. (2001). A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol 248, 870-876.
    Juvonen, V., Hietala, M., Paivarinta, M., Rantamaki, M., Hakamies, L., Kaakkola, S., Vierimaa, O., Penttinen, M., and Savontaus, M.L. (2000). Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 48, 354-361.
    Juvonen, V., Kairisto, V., Hietala, M., and Savontaus, M.L. (2002). Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. Journal of medical genetics 39, 935-936.
    Kao S.H. (2008) Spinocerebellar ataxia type 8: genetic and promoter functional studies. Master thesis. National Taiwan Normal University.
    Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., et al. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature genetics 8, 221-228.
    Kim, J.K., Samaranayake, M., and Pradhan, S. (2009). Epigenetic mechanisms in mammals. Cell Mol Life Sci 66, 596-612.
    Klar, A., Jessell, T.M., and Ruiz i Altaba, A. (1992). Control of floor plate identity and function in the embryonic nervous system. Cold Spring Harbor symposia on quantitative biology 57, 473-482.
    Koch, K.S., and Leffert, H.L. (1998). Giant hairpins formed by CUG repeats in myotonic dystrophy messenger RNAs might sterically block RNA export through nuclear pores. Journal of theoretical biology 192, 505-514.
    Koide, R., Ikeuchi, T., Onodera, O., Tanaka, H., Igarashi, S., Endo, K., Takahashi, H., Kondo, R., Ishikawa, A., Hayashi, T., et al. (1994). Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature genetics 6, 9-13.
    Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., and Tsuji, S. (1999). A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human molecular genetics 8, 2047-2053.
    Koob, M.D., Moseley, M.L., Schut, L.J., Benzow, K.A., Bird, T.D., Day, J.W., and Ranum, L.P. (1999). An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature genetics 21, 379-384.
    Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation. The Journal of biological chemistry 266, 19867-19870.
    Kozak, M. (1997). Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. The EMBO journal 16, 2482-2492.
    Larkin, K., and Fardaei, M. (2001). Myotonic dystrophy--a multigene disorder. Brain research bulletin 56, 389-395.
    Lee G.C. (2008) Spinocerebellar ataxia: Epigenetic and cell model studies of SCA type 8. Master thesis. National Taiwan Normal University.
    Lin H.Y. (2007) Genetic studies of spinocerebellar ataxias and molecular impacts of CTG trinucleotide expansion. Doctoral thesis. National Taiwan Normal University.
    Liquori, C.L., Ricker, K., Moseley, M.L., Jacobsen, J.F., Kress, W., Naylor, S.L., Day, J.W., and Ranum, L.P. (2001). Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science (New York, NY 293, 864-867.
    Lock, P., Ralph, S., Stanley, E., Boulet, I., Ramsay, R., and Dunn, A.R. (1991). Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Molecular and cellular biology 11, 4363-4370.
    Marouga, R., David, S., and Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and bioanalytical chemistry 382, 669-678.
    Matsuura, T., Yamagata, T., Burgess, D.L., Rasmussen, A., Grewal, R.P., Watase, K., Khajavi, M., McCall, A.E., Davis, C.F., Zu, L., et al. (2000). Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature genetics 26, 191-194.
    Mitchell, S.A., Spriggs, K.A., Coldwell, M.J., Jackson, R.J., and Willis, A.E. (2003). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Molecular cell 11, 757-771.
    Moseley, M.L., Zu, T., Ikeda, Y., Gao, W., Mosemiller, A.K., Daughters, R.S., Chen, G., Weatherspoon, M.R., Clark, H.B., Ebner, T.J., et al. (2006). Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature genetics 38, 758-769.
    Mosemiller, A.K., Dalton, J.C., Day, J.W., and Ranum, L.P. (2003). Molecular genetics of spinocerebellar ataxia type 8 (SCA8). Cytogenet Genome Res 100, 175-183.
    Munoz, U., Bartolome, F., Bermejo, F., and Martin-Requero, A. (2008). Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer's dementia patients. Neurobiology of aging 29, 1474-1484.
    Nemes, J.P., Benzow, K.A., Moseley, M.L., Ranum, L.P., and Koob, M.D. (2000). The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Human molecular genetics 9, 1543-1551.
    Ngoka, L.C. (2008). Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome science 6, 30.
    Orr, H.T., Chung, M.Y., Banfi, S., Kwiatkowski, T.J., Jr., Servadio, A., Beaudet, A.L., McCall, A.E., Duvick, L.A., Ranum, L.P., and Zoghbi, H.Y. (1993). Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature genetics 4, 221-226.
    Otten, A.D., and Tapscott, S.J. (1995). Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proceedings of the National Academy of Sciences of the United States of America 92, 5465-5469.
    Pato, C.N., Macedo, A., Ambrosio, A., Vincent, J.B., Bauer, A., Schindler, K., Xu, J., Coelho, I., Dourado, A., Valente, J., et al. (2000). Detection of expansion regions in Portuguese bipolar families. American journal of medical genetics 96, 854-857.
    Philips, A.V., Timchenko, L.T., and Cooper, T.A. (1998). Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science (New York, NY 280, 737-741.
    Polyak, K., Lee, M.H., Erdjument-Bromage, H., Koff, A., Roberts, J.M., Tempst, P., and Massague, J. (1994). Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59-66.
    Pulst, S.M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.N., Lopes-Cendes, I., Pearlman, S., Starkman, S., Orozco-Diaz, G., Lunkes, A., et al. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature genetics 14, 269-276.
    Pyronnet, S., Pradayrol, L., and Sonenberg, N. (2000). A cell cycle-dependent internal ribosome entry site. Molecular cell 5, 607-616.
    Ranum, L.P., and Day, J.W. (2002). Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Current neurology and neuroscience reports 2, 465-470.
    Ranum, L.P., and Day, J.W. (2004). Pathogenic RNA repeats: an expanding role in genetic disease. Trends Genet 20, 506-512.
    Robinson, D.N., and Cooley, L. (1997). Drosophila kelch is an oligomeric ring canal actin organizer. The Journal of cell biology 138, 799-810.
    Sala, S.G., Munoz, U., Bartolome, F., Bermejo, F., and Martin-Requero, A. (2008). HMG-CoA reductase inhibitor simvastatin inhibits cell cycle progression at the G1/S checkpoint in immortalized lymphocytes from Alzheimer's disease patients independently of cholesterol-lowering effects. The Journal of pharmacology and experimental therapeutics 324, 352-359.
    Sasagawa, N., Takahashi, N., Suzuki, K., and Ishiura, S. (1999). An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy. Biochemical and biophysical research communications 264, 76-80.
    Saveliev, A., Everett, C., Sharpe, T., Webster, Z., and Festenstein, R. (2003). DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422, 909-913.
    Schols, L., Bauer, I., Zuhlke, C., Schulte, T., Kolmel, C., Burk, K., Topka, H., Bauer, P., Przuntek, H., and Riess, O. (2003). Do CTG expansions at the SCA8 locus cause ataxia? Ann Neurol 54, 110-115.
    Shaw, G., Morse, S., Ararat, M., and Graham, F.L. (2002). Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J 16, 869-871.
    Sheline, C.T., and Choi, D.W. (1998). Neuronal death in cultured murine cortical cells is induced by inhibition of GAPDH and triosephosphate isomerase. Neurobiology of disease 5, 47-54.
    Shih, S.C., and Claffey, K.P. (1999). Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. The Journal of biological chemistry 274, 1359-1365.
    Silveira, I., Alonso, I., Guimaraes, L., Mendonca, P., Santos, C., Maciel, P., Fidalgo De Matos, J.M., Costa, M., Barbot, C., Tuna, A., et al. (2000). High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66, 830-840.
    Sobrido, M.J., Cholfin, J.A., Perlman, S., Pulst, S.M., and Geschwind, D.H. (2001). SCA8 repeat expansions in ataxia: a controversial association. Neurology 57, 1310-1312.
    Sonenberg, N. (1994). Regulation of translation and cell growth by eIF-4E. Biochimie 76, 839-846.
    Stevanin, G., Herman, A., Durr, A., Jodice, C., Frontali, M., Agid, Y., and Brice, A. (2000). Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nature genetics 24, 213; author reply 215.
    Stoneley, M., and Willis, A.E. (2004). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200-3207.
    Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
    Sulek, A., Hoffman-Zacharska, D., Bednarska-Makaruk, M., Szirkowiec, W., and Zaremba, J. (2004). Polymorphism of trinucleotide repeats in non-translated regions of SCA8 and SCA12 genes: allele distribution in a Polish control group. J Appl Genet 45, 101-105.
    Sultana, R., Perluigi, M., Newman, S.F., Pierce, W.M., Cini, C., Coccia, R., and Butterfield, D.A. Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer's disease. Antioxidants & redox signaling 12, 327-336.
    Taneja, K.L., McCurrach, M., Schalling, M., Housman, D., and Singer, R.H. (1995). Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. The Journal of cell biology 128, 995-1002.
    Tang, H.L., Yeh, L.S., Chen, N.K., Ripmaster, T., Schimmel, P., and Wang, C.C. (2004). Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. The Journal of biological chemistry 279, 49656-49663.
    Tazon, B., Badenas, C., Jimenez, L., Munoz, E., and Mila, M. (2002). SCA8 in the Spanish population including one homozygous patient. Clin Genet 62, 404-409.
    Tian, B., White, R.J., Xia, T., Welle, S., Turner, D.H., Mathews, M.B., and Thornton, C.A. (2000). Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA (New York, NY 6, 79-87.
    Timchenko, N.A., Cai, Z.J., Welm, A.L., Reddy, S., Ashizawa, T., and Timchenko, L.T. (2001). RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. The Journal of biological chemistry 276, 7820-7826.
    Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377-396.
    Topisirovic, I., Dragasevic, N., Savic, D., Ristic, A., Keckarevic, M., Keckarevic, D., Culjkovic, B., Petrovic, I., Romac, S., and Kostic, V.S. (2002). Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin Genet 62, 321-324.
    Touriol, C., Bornes, S., Bonnal, S., Audigier, S., Prats, H., Prats, A.C., and Vagner, S. (2003). Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biology of the cell / under the auspices of the European Cell Biology Organization 95, 169-178.
    Tsai, H.F., Lin, S.J., Li, C., and Hsieh, M. (2005). Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochemical and biophysical research communications 334, 1279-1286.
    Tsuchida, T., Ensini, M., Morton, S.B., Baldassare, M., Edlund, T., Jessell, T.M., and Pfaff, S.L. (1994). Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957-970.
    van Swieten, J.C., Brusse, E., de Graaf, B.M., Krieger, E., van de Graaf, R., de Koning, I., Maat-Kievit, A., Leegwater, P., Dooijes, D., Oostra, B.A., et al. (2003). A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 72, 191-199.
    Vincent, J.B., Yuan, Q.P., Schalling, M., Adolfsson, R., Azevedo, M.H., Macedo, A., Bauer, A., DallaTorre, C., Medeiros, H.M., Pato, M.T., et al. (2000). Long repeat tracts at SCA8 in major psychosis. American journal of medical genetics 96, 873-876.
    Waters, M.F., Minassian, N.A., Stevanin, G., Figueroa, K.P., Bannister, J.P., Nolte, D., Mock, A.F., Evidente, V.G., Fee, D.B., Muller, U., et al. (2006). Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature genetics 38, 447-451.
    Wegrzyn, J.L., Drudge, T.M., Valafar, F., and Hook, V. (2008). Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites. BMC bioinformatics 9, 232.
    Wen, F.C., Li, Y.H., Tsai, H.F., Lin, C.H., Li, C., Liu, C.S., Lii, C.K., Nukina, N., and Hsieh, M. (2003). Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett 546, 307-314.
    Worth, P.F., Houlden, H., Giunti, P., Davis, M.B., and Wood, N.W. (2000). Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nature genetics 24, 214-215.
    Wu, Y.R., Chen, I.C., Soong, B.W., Kao, S.H., Lee, G.C., Huang, S.Y., Fung, H.C., Lee-Chen, G.J., and Chen, C.M. (2009). SCA8 repeat expansion: large CTA/CTG repeat alleles in neurological disorders and functional implications. Human genetics 125, 437-444.
    Xue, F., and Cooley, L. (1993). kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681-693.
    Yabe, I., Sasaki, H., Chen, D.H., Raskind, W.H., Bird, T.D., Yamashita, I., Tsuji, S., Kikuchi, S., and Tashiro, K. (2003). Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Archives of neurology 60, 1749-1751.
    Yamin, G., Glaser, C.B., Uversky, V.N., and Fink, A.L. (2003). Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. The Journal of biological chemistry 278, 27630-27635.
    Yan, J.X., Devenish, A.T., Wait, R., Stone, T., Lewis, S., and Fowler, S. (2002). Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682-1698.
    Zhuchenko, O., Bailey, J., Bonnen, P., Ashizawa, T., Stockton, D.W., Amos, C., Dobyns, W.B., Subramony, S.H., Zoghbi, H.Y., and Lee, C.C. (1997). Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nature genetics 15, 62-69.

    下載圖示
    QR CODE