研究生: |
林于寬 Lin, Yu-Kuan |
---|---|
論文名稱: |
開發大腸桿菌之雙訊號多巴胺全細胞生物感測器 Development of a dual-signal whole-cell biosensor for dopamine neurotransmitter detection in Escherichia coli |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 單胺 、兒茶酚胺 、多巴胺 、甜菜醛胺酸 、全細胞生物感測器 、4,5-多巴雙加氧酶 |
英文關鍵詞: | monoamine, catecholamine, dopamine, betalamic acid, whole-cell biosensor, 4,5-DOPA extradiol dioxygenase |
DOI URL: | https://doi.org/10.6345/NTNU202201999 |
論文種類: | 學術論文 |
相關次數: | 點閱:226 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多巴胺為一兒茶酚胺類之神經傳導物質且在人體中扮演著不可或缺的角色,而不正常的多巴胺濃度會導致一些疾病的產生,如:帕金森氏症以及亨丁頓舞蹈症。因此檢測多巴胺是一門很重要的課題。我們設計了一組感測多巴胺之大腸桿菌全細胞生物感測器,運用大腸桿菌中單胺類調控組作為感測機制,並以紅色螢光蛋白作為訊號來源,針對多巴胺濃度能夠有良好的相關係數以及偵測極限 (1.43M),且將紅色螢光蛋白置換為紫茉莉之4,5-多巴雙加氧酶 (MjDOD),4,5-多巴雙加氧酶能將左旋多巴轉換為甜菜醛胺酸 (具有432nm特徵吸收峰,為甜菜黃色素之前驅物),推測多巴胺也能透過4,5-多巴雙加氧酶催化而形成同樣具有432nm特徵吸收峰的6-去羧基甜菜醛胺酸,置換4,5-多巴雙加氧酶後在偵測多巴胺以及左旋多巴時,同時具有相當不錯的相關係數以及偵測極限,也經由酵素的置換,我們成功地消除了苯乙胺以及苯乙醛的干擾。最後我們結合紅色螢光蛋白以及4,5-多巴雙加氧酶,設計出足以區分苯乙胺、多巴胺、左旋多巴以及腎上腺素等四種類似物,透過偵測紅色螢光以及432nm特徵吸收峰,這四種類似物的訊號消長不盡相同,因此可以製作其特徵訊號圖譜。此生物感測器有著相當不錯的偵測極限以及區分多巴胺類似物的特性,在未來偵測與多巴胺相關的疾病能夠更加精準且有效。
Dopamine, a catecholamine neurotransmitter, plays an important role in mammalian central nervous system. Abnormal concentration of dopamine in biological fluids causes several diseases such as Parkinson’s and Huntington’s disease. Therefore, it is an important research topic to develop a quantitative method to accurately estimate the level of dopamine. In this study, we designed a whole-cell biosensor for dopamine detection using monoamine regulon in Escherichia coli and RFP (red fluorescence protein) as a signal output. The detection of limit was 1.43M. Afterward, we replaced RFP with MjDOD (4,5-DOPA extradiol dioxygenase from Mirabilis Jalapa) . L-DOPA can be converted into betalamic acid (a precursor of betaxanthin and absorb at 432nm) by MjDOD. We proposed that dopamine can be converted into 6-decarboxylated betalamic acid by MjDOD. This biosensor could detect dopamine and L-DOPA with relatively high selectivity and without the interferences of phenethylamine and phenylacetaldehyde. Finally, phenethylamine, dopamine, L-DOPA, and (-)-Epinephrine can be distinguished with as-developed dual-signal biosensor carrying RFP and MjDOD simultaneously and each analogue has a unique fingerprint profile. With feature, this biosensor could potentially improve the accuracy and specificity in the diagnosis of dopamine.
1. Jian, X.; Wasinger, E. C.; Lockard, J. V.; Chen, L. X.; He, C., Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia metallidurans. Journal of the American Chemical Society 2009, 131 (31), 10869-10871.
2. Makarova, K. S.; Aravind, L.; Wolf, Y. I.; Tatusov, R. L.; Minton, K. W.; Koonin, E. V.; Daly, M. J., Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics. Microbiology and Molecular Biology Reviews 2001, 65 (1), 44-79.
3. Worsey, M. J.; Williams, P. A., Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology. 1975, 124 (1), 7-13.
4. Zhang, F.; Keasling, J., Biosensors and their applications in microbial metabolic engineering. Trends in Microbiology 2011, 19 (7), 323-329.
5. Möglich, A.; Ayers, R. A.; Moffat, K., Design and Signaling Mechanism of Light-Regulated Histidine Kinases. Journal of Molecular Biology 2009, 385 (5), 1433-1444.
6. Rodríguez-Montelongo, L.; Volentini, S. I.; Farías, R. N.; Massa, E. M.; Rapisarda, V. A., The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Archives of Biochemistry and Biophysics 2006, 451 (1), 1-7.
7. Rapisarda, V. A.; Montelongo, L. R. g.; Farı́as, R. N.; Massa, E. M., Characterization of an NADH-Linked Cupric Reductase Activity from the Escherichia coli Respiratory Chain. Archives of Biochemistry and Biophysics. 1999, 370 (2), 143-150.
8. Chen, P.-H.; Lin, C.; Guo, K.-H.; Yeh, Y.-C., Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Advances 2017, 7 (47), 29302-29305.
9. Broadley, K. J., The vascular effects of trace amines and amphetamines. Pharmacology & Therapeutics 2010, 125 (3), 363-375.
10. Prieto, M. A.; Galán, B.; Torres, B.; Ferrández, A.; Fernández, C.; Miñambres, B.; García, J. L.; Díaz, E., Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli FEMS Microbiology Reviews 2004, 28 (4), 503.
11. Díaz, E.; Ferrández, A.; Prieto, M. A.; García, J. L., Biodegradation of Aromatic Compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 2001, 65 (4), 523-569.
12. Zeng, J.; Spiro, S., Finely Tuned Regulation of the Aromatic Amine Degradation Pathway in Escherichia coli. Journal of Bacteriology 2013, 195 (22), 5141-5150.
13. Yamashita, M.; Azakami, H.; Yokoro, N.; Roh, J. H.; Suzuki, H.; Kumagai, H.; Murooka, Y., maoB, a gene that encodes a positive regulator of the monoamine oxidase gene (maoA) in Escherichia coli. Journal of Bacteriology. 1996, 178 (10), 2941-2947.
14. Parrott, S.; Jones, S.; Cooper, R. A., 2-Phenylethylamine Catabolism by Escherichia coli K12. Microbiology 1987, 133 (2), 347-351.
15. Ferrández, A.; Miñambres, B.; Garcı́a, B.; Olivera, E. a. R.; Luengo, J. M.; Garcı́a, J. L.; Dı́az, E., Catabolism of Phenylacetic Acid in Escherichia coli : CHARACTERIZATION OF A NEW AEROBIC HYBRID PATHWAY. Journal of Biological Chemistry 1998, 273 (40), 25974-25986.
16. Postma, P. W.; Lengeler, J. W.; Jacobson, G. R., Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiological Reviews 1993, 57 (3), 543-594.
17. Gorke, B.; Stulke, J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microology 2008, 6 (8), 613-624.
18. Busby, S.; Ebright, R. H., Transcription activation by catabolite activator protein (CAP). Journal of Molecular Biology 1999, 293 (2), 199-213.
19. Tagami, H.; Aiba, H., A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters. The EMBO Journal 1998, 17 (6), 1759-1767.
20. Schliemann, W.; Kobayashi, N.; Strack, D., The Decisive Step in Betaxanthin Biosynthesis Is a Spontaneous Reaction. Plant Physiology 1999, 119 (4), 1217-1232.
21. Sekiguchi, H.; Ozeki, Y.; Sasaki, N., In Vitro Synthesis of Betaxanthins Using Recombinant DOPA 4,5-Dioxygenase and Evaluation of Their Radical-Scavenging Activities. Journal of Agricultural and Food Chemistry 2010, 58 (23), 12504-12509.
22. Esatbeyoglu, T.; Wagner, A. E.; Schini-Kerth, V. B.; Rimbach, G., Betanin—A food colorant with biological activity. Molecular Nutrition & Food Research 2015, 59 (1), 36-47.
23. Nakatsuka, T.; Yamada, E.; Takahashi, H.; Imamura, T.; Suzuki, M.; Ozeki, Y.; Tsujimura, I.; Saito, M.; Sakamoto, Y.; Sasaki, N.; Nishihara, M., Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports 2013, 3, 1970.
24. Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Detection of DOPA 4,5-Dioxygenase (DOD) Activity Using Recombinant Protein Prepared from Escherichia coli Cells Harboring Cdna Encoding DOD from Mirabilis jalapa. Plant and Cell Physiology 2009, 50 (5), 1012-1016.
25. Gandía-Herrero, F.; García-Carmona, F., Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied Microbiology and Biotechnology 2014, 98 (3), 1165-1174.
26. Zachek, M. K.; Hermans, A.; Wightman, R. M.; McCarty, G. S., Electrochemical Dopamine Detection: Comparing Gold and Carbon Fiber Microelectrodes using Background Subtracted Fast Scan Cyclic Voltammetry. Journal of electroanalytical chemistry (Lausanne, Switzerland) 2008, 614 (1-2), 113-120.
27. Li, J.; Yang, J.; Yang, Z.; Li, Y.; Yu, S.; Xu, Q.; Hu, X., Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Analytical Methods 2012, 4 (6), 1725-1728.
28. Lin, Y.; Chen, C.; Wang, C.; Pu, F.; Ren, J.; Qu, X., Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag-catechol interaction. Chemical. Communication. 2011, 47 (4), 1181-1183.
29. Zhang, X.; Chen, X.; Kai, S.; Wang, H.-Y.; Yang, J.; Wu, F.-G.; Chen, Z., Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles. Anal. Chem. 2015, 87 (6), 3360-3365.
30. Cookson, M. R., α-Synuclein and neuronal cell death. Molecular Neurodegeneration 2009, 4, 9-9.
31. Schulz-Schaeffer, W. J., The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica 2010, 120 (2), 131-143.
32. Beyer, K.; Domingo-Sàbat, M.; Ariza, A., Molecular Pathology of Lewy Body Diseases. International Journal of Molecular Sciences 2009, 10 (3), 724-745.
33. Sveinbjornsdottir, S., The clinical symptoms of Parkinson's disease. Journal of Neurochemistry 2016, 139, 318-324.
34. Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; Keasling, J. D., BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering 2011, 5 (1), 12.
35. Yildirim, A.; Bayindir, M., Turn-on Fluorescent Dopamine Sensing Based on in Situ Formation of Visible Light Emitting Polydopamine Nanoparticles. Analytical Chemistry 2014, 86 (11), 5508-5512.
36. Mao, Y.; Bao, Y.; Gan, S.; Li, F.; Niu, L., Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosensors and Bioelectronics. 2011, 28 (1), 291-297.
37. Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q., Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical 2013, 186, 380-387.