簡易檢索 / 詳目顯示

研究生: 林于寬
Lin, Yu-Kuan
論文名稱: 開發大腸桿菌之雙訊號多巴胺全細胞生物感測器
Development of a dual-signal whole-cell biosensor for dopamine neurotransmitter detection in Escherichia coli
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 單胺兒茶酚胺多巴胺甜菜醛胺酸全細胞生物感測器4,5-多巴雙加氧酶
英文關鍵詞: monoamine, catecholamine, dopamine, betalamic acid, whole-cell biosensor, 4,5-DOPA extradiol dioxygenase
DOI URL: https://doi.org/10.6345/NTNU202201999
論文種類: 學術論文
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多巴胺為一兒茶酚胺類之神經傳導物質且在人體中扮演著不可或缺的角色,而不正常的多巴胺濃度會導致一些疾病的產生,如:帕金森氏症以及亨丁頓舞蹈症。因此檢測多巴胺是一門很重要的課題。我們設計了一組感測多巴胺之大腸桿菌全細胞生物感測器,運用大腸桿菌中單胺類調控組作為感測機制,並以紅色螢光蛋白作為訊號來源,針對多巴胺濃度能夠有良好的相關係數以及偵測極限 (1.43M),且將紅色螢光蛋白置換為紫茉莉之4,5-多巴雙加氧酶 (MjDOD),4,5-多巴雙加氧酶能將左旋多巴轉換為甜菜醛胺酸 (具有432nm特徵吸收峰,為甜菜黃色素之前驅物),推測多巴胺也能透過4,5-多巴雙加氧酶催化而形成同樣具有432nm特徵吸收峰的6-去羧基甜菜醛胺酸,置換4,5-多巴雙加氧酶後在偵測多巴胺以及左旋多巴時,同時具有相當不錯的相關係數以及偵測極限,也經由酵素的置換,我們成功地消除了苯乙胺以及苯乙醛的干擾。最後我們結合紅色螢光蛋白以及4,5-多巴雙加氧酶,設計出足以區分苯乙胺、多巴胺、左旋多巴以及腎上腺素等四種類似物,透過偵測紅色螢光以及432nm特徵吸收峰,這四種類似物的訊號消長不盡相同,因此可以製作其特徵訊號圖譜。此生物感測器有著相當不錯的偵測極限以及區分多巴胺類似物的特性,在未來偵測與多巴胺相關的疾病能夠更加精準且有效。

    Dopamine, a catecholamine neurotransmitter, plays an important role in mammalian central nervous system. Abnormal concentration of dopamine in biological fluids causes several diseases such as Parkinson’s and Huntington’s disease. Therefore, it is an important research topic to develop a quantitative method to accurately estimate the level of dopamine. In this study, we designed a whole-cell biosensor for dopamine detection using monoamine regulon in Escherichia coli and RFP (red fluorescence protein) as a signal output. The detection of limit was 1.43M. Afterward, we replaced RFP with MjDOD (4,5-DOPA extradiol dioxygenase from Mirabilis Jalapa) . L-DOPA can be converted into betalamic acid (a precursor of betaxanthin and absorb at 432nm) by MjDOD. We proposed that dopamine can be converted into 6-decarboxylated betalamic acid by MjDOD. This biosensor could detect dopamine and L-DOPA with relatively high selectivity and without the interferences of phenethylamine and phenylacetaldehyde. Finally, phenethylamine, dopamine, L-DOPA, and (-)-Epinephrine can be distinguished with as-developed dual-signal biosensor carrying RFP and MjDOD simultaneously and each analogue has a unique fingerprint profile. With feature, this biosensor could potentially improve the accuracy and specificity in the diagnosis of dopamine.

    口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 x Chapter 1 緒論 (Introduction) 1 1-1 運用微生物調控發展全細胞生物感測器 (Microbial engineered in whole-cell biosensor application) 1 1-2 兒茶酚胺類神經傳導物質 (Neurotransmitter of catecholamine) 3 1-3 大腸桿菌中單胺類有機分子調控組 (Monoamine regulon in E. coli, Fea regulon) 5 1-3-1 單胺類調控組 5 1-3-2 單胺類代謝路徑 6 1-4 碳源分解代謝抑制效應 (Carbon catabolite repression, CCR) 7 1-4-1 磷酸烯醇式丙酮酸之磷酸轉移系統 7 1-4-2 大腸桿菌之葡萄糖分解代謝抑制效應 8 1-5 甜菜醛胺酸及甜菜色素 (Betalamic acid and betalain) 10 1-5-1 甜菜色素 10 1-5-2 甜菜醛胺酸 11 1-6 多巴雙加氧酶 (DOPA dioxygenase, DOD) 12 1-7 文獻探討 (Previous research) 14 1-8 實驗動機與目的 (Motivation and purpose) 15 Chapter 2 實驗方法 (Experimental procedure) 16 2-1 實驗設計 (Experimental design) 17 2-1-1 多巴胺生物感測器設計 17 2-1-2 單胺類生物感測器設計 19 2-2 實驗原理 (Experimental principle) 20 2-2-1 大腸桿菌多巴胺生物感測器偵測原理 20 2-2-2 提升大腸桿菌多巴胺生物感測器訊號強度 22 2-2-3 除去苯乙胺干擾性之多巴胺大腸桿菌生物感測器 23 2-2-4 單胺類大腸桿菌生物感測器偵測原理 25 2-3 實驗優化 (Experimental optimization) 27 2-3-1 優化大腸桿菌生長條件 27 2-3-2 大腸桿菌多巴胺生物感測器篩選 29 2-3-3 多巴雙加氧酶與待測物催化活性測試 30 2-4 培養條件 (Incubated condition) 33 2-4-1 多巴胺生物感測器生長條件及訊號分析 33 2-4-2 單胺類生物感測器生長條件及訊號分析 33 2-5 定性 (Characterization) 34 2-5-1 十二烷基硫酸鈉聚丙醯胺凝膠電泳與西方墨點法 34 Chapter 3 實驗結果 (Result) 36 3-1 多巴胺生物感測器 (Dopamine biosensor) 36 3-1-1 YCY_620品系生物感測器之多巴胺衍生物專一性測試 36 3-1-2 YCY_620品系生物感測器之多巴胺劑量表現測試 37 3-1-3 YCY_628品系生物感測器之多巴胺衍生物專一性測試 38 3-1-4 YCY_628品系生物感測器之多巴胺劑量表現測試 39 3-1-5 YCY_628品系生物感測器之左旋多巴劑量表現測試 40 3-2 單胺類生物感測器 (Monoamine biosensor) 41 3-2-1 YCY_637品系之多巴胺及其衍生物劑量分析 42 3-2-2 YCY_637品系之單胺類混合物數據分析 46 Chapter 4 實驗結果討論 (Discussion) 48 4-1 驗證6-去羧基甜菜醛胺酸的生成 48 4-2 YCY_628品系為何對左旋多巴具有催化能力? 50 4-3 YCY_637多巴胺與左旋多巴混合溶液之吸收值變化 52 4-4 與先前研究文獻之多巴胺感測器比較 54 結論 (Conclusion) 55 REFERENCE 57 附錄A 本研究中所使用之引子、質體與菌種 A-1 附錄B 本研究所使用之藥品、儀器 B-1

    1. Jian, X.; Wasinger, E. C.; Lockard, J. V.; Chen, L. X.; He, C., Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia metallidurans. Journal of the American Chemical Society 2009, 131 (31), 10869-10871.
    2. Makarova, K. S.; Aravind, L.; Wolf, Y. I.; Tatusov, R. L.; Minton, K. W.; Koonin, E. V.; Daly, M. J., Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics. Microbiology and Molecular Biology Reviews 2001, 65 (1), 44-79.
    3. Worsey, M. J.; Williams, P. A., Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology. 1975, 124 (1), 7-13.
    4. Zhang, F.; Keasling, J., Biosensors and their applications in microbial metabolic engineering. Trends in Microbiology 2011, 19 (7), 323-329.
    5. Möglich, A.; Ayers, R. A.; Moffat, K., Design and Signaling Mechanism of Light-Regulated Histidine Kinases. Journal of Molecular Biology 2009, 385 (5), 1433-1444.
    6. Rodríguez-Montelongo, L.; Volentini, S. I.; Farías, R. N.; Massa, E. M.; Rapisarda, V. A., The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Archives of Biochemistry and Biophysics 2006, 451 (1), 1-7.
    7. Rapisarda, V. A.; Montelongo, L. R. g.; Farı́as, R. N.; Massa, E. M., Characterization of an NADH-Linked Cupric Reductase Activity from the Escherichia coli Respiratory Chain. Archives of Biochemistry and Biophysics. 1999, 370 (2), 143-150.
    8. Chen, P.-H.; Lin, C.; Guo, K.-H.; Yeh, Y.-C., Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Advances 2017, 7 (47), 29302-29305.
    9. Broadley, K. J., The vascular effects of trace amines and amphetamines. Pharmacology & Therapeutics 2010, 125 (3), 363-375.
    10. Prieto, M. A.; Galán, B.; Torres, B.; Ferrández, A.; Fernández, C.; Miñambres, B.; García, J. L.; Díaz, E., Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli FEMS Microbiology Reviews 2004, 28 (4), 503.
    11. Díaz, E.; Ferrández, A.; Prieto, M. A.; García, J. L., Biodegradation of Aromatic Compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 2001, 65 (4), 523-569.
    12. Zeng, J.; Spiro, S., Finely Tuned Regulation of the Aromatic Amine Degradation Pathway in Escherichia coli. Journal of Bacteriology 2013, 195 (22), 5141-5150.
    13. Yamashita, M.; Azakami, H.; Yokoro, N.; Roh, J. H.; Suzuki, H.; Kumagai, H.; Murooka, Y., maoB, a gene that encodes a positive regulator of the monoamine oxidase gene (maoA) in Escherichia coli. Journal of Bacteriology. 1996, 178 (10), 2941-2947.
    14. Parrott, S.; Jones, S.; Cooper, R. A., 2-Phenylethylamine Catabolism by Escherichia coli K12. Microbiology 1987, 133 (2), 347-351.
    15. Ferrández, A.; Miñambres, B.; Garcı́a, B.; Olivera, E. a. R.; Luengo, J. M.; Garcı́a, J. L.; Dı́az, E., Catabolism of Phenylacetic Acid in Escherichia coli : CHARACTERIZATION OF A NEW AEROBIC HYBRID PATHWAY. Journal of Biological Chemistry 1998, 273 (40), 25974-25986.
    16. Postma, P. W.; Lengeler, J. W.; Jacobson, G. R., Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiological Reviews 1993, 57 (3), 543-594.
    17. Gorke, B.; Stulke, J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microology 2008, 6 (8), 613-624.
    18. Busby, S.; Ebright, R. H., Transcription activation by catabolite activator protein (CAP). Journal of Molecular Biology 1999, 293 (2), 199-213.
    19. Tagami, H.; Aiba, H., A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters. The EMBO Journal 1998, 17 (6), 1759-1767.
    20. Schliemann, W.; Kobayashi, N.; Strack, D., The Decisive Step in Betaxanthin Biosynthesis Is a Spontaneous Reaction. Plant Physiology 1999, 119 (4), 1217-1232.
    21. Sekiguchi, H.; Ozeki, Y.; Sasaki, N., In Vitro Synthesis of Betaxanthins Using Recombinant DOPA 4,5-Dioxygenase and Evaluation of Their Radical-Scavenging Activities. Journal of Agricultural and Food Chemistry 2010, 58 (23), 12504-12509.
    22. Esatbeyoglu, T.; Wagner, A. E.; Schini-Kerth, V. B.; Rimbach, G., Betanin—A food colorant with biological activity. Molecular Nutrition & Food Research 2015, 59 (1), 36-47.
    23. Nakatsuka, T.; Yamada, E.; Takahashi, H.; Imamura, T.; Suzuki, M.; Ozeki, Y.; Tsujimura, I.; Saito, M.; Sakamoto, Y.; Sasaki, N.; Nishihara, M., Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports 2013, 3, 1970.
    24. Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Detection of DOPA 4,5-Dioxygenase (DOD) Activity Using Recombinant Protein Prepared from Escherichia coli Cells Harboring Cdna Encoding DOD from Mirabilis jalapa. Plant and Cell Physiology 2009, 50 (5), 1012-1016.
    25. Gandía-Herrero, F.; García-Carmona, F., Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied Microbiology and Biotechnology 2014, 98 (3), 1165-1174.
    26. Zachek, M. K.; Hermans, A.; Wightman, R. M.; McCarty, G. S., Electrochemical Dopamine Detection: Comparing Gold and Carbon Fiber Microelectrodes using Background Subtracted Fast Scan Cyclic Voltammetry. Journal of electroanalytical chemistry (Lausanne, Switzerland) 2008, 614 (1-2), 113-120.
    27. Li, J.; Yang, J.; Yang, Z.; Li, Y.; Yu, S.; Xu, Q.; Hu, X., Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Analytical Methods 2012, 4 (6), 1725-1728.
    28. Lin, Y.; Chen, C.; Wang, C.; Pu, F.; Ren, J.; Qu, X., Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag-catechol interaction. Chemical. Communication. 2011, 47 (4), 1181-1183.
    29. Zhang, X.; Chen, X.; Kai, S.; Wang, H.-Y.; Yang, J.; Wu, F.-G.; Chen, Z., Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles. Anal. Chem. 2015, 87 (6), 3360-3365.
    30. Cookson, M. R., α-Synuclein and neuronal cell death. Molecular Neurodegeneration 2009, 4, 9-9.
    31. Schulz-Schaeffer, W. J., The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica 2010, 120 (2), 131-143.
    32. Beyer, K.; Domingo-Sàbat, M.; Ariza, A., Molecular Pathology of Lewy Body Diseases. International Journal of Molecular Sciences 2009, 10 (3), 724-745.
    33. Sveinbjornsdottir, S., The clinical symptoms of Parkinson's disease. Journal of Neurochemistry 2016, 139, 318-324.
    34. Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; Keasling, J. D., BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering 2011, 5 (1), 12.
    35. Yildirim, A.; Bayindir, M., Turn-on Fluorescent Dopamine Sensing Based on in Situ Formation of Visible Light Emitting Polydopamine Nanoparticles. Analytical Chemistry 2014, 86 (11), 5508-5512.
    36. Mao, Y.; Bao, Y.; Gan, S.; Li, F.; Niu, L., Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosensors and Bioelectronics. 2011, 28 (1), 291-297.
    37. Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q., Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical 2013, 186, 380-387.

    下載圖示
    QR CODE