簡易檢索 / 詳目顯示

研究生: 蔡舜璽
Tsai, Shun-Hsi
論文名稱: 單次阻力運動調控發炎機制探討:STAT3扮演之角色
The regulation of inflammatory mechanism by acute resistance exercise: The role of STAT3
指導教授: 劉宏文
Liu, Hung-Wen
口試委員: 吳慧君
Wu, Huey-June
王鶴森
Wang, Ho‑Seng
何承訓
He, Cheng-Shiun
徐孟達
Hsu, Mong-Da
劉宏文
Liu, Hung-Wen
口試日期: 2023/10/23
學位類別: 博士
Doctor
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 69
中文關鍵詞: 周邊血液單核細胞白血球計數循環細胞激素抗發炎訊息傳遞路徑
英文關鍵詞: peripheral blood mononuclear cells, white blood cell counts, circulating cytokines, anti-inflammatory signaling pathway
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301815
論文種類: 學術論文
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

背景:長期的慢性發炎會增加罹患慢性疾病的風險。單次阻力運動可以增加抗發炎細胞激素,進而抑制發炎路徑達到抗發炎之效果。然而,現階段阻力運動相關研究仍多以觀察循環細胞激素濃度變化為主,對於阻力運動後對STAT3訊息傳遞路徑的反應尚待後續研究闡明。目的:一、探討單次阻力運動後健康年輕男性在循環免疫細胞數目及循環細胞激素濃度的影響。二、探討單次阻力運動後健康年輕男性在周邊血液單核細胞 (peripheral blood mononuclear cells, PBMCs) 中STAT3調控發炎相關路徑的影響。方法:本研究招募16名健康年輕男性作為研究對象,以隨機交叉設計,進行單次阻力運動 (resistance exercise, RE) 或安靜休息 (control, CON) 兩種實驗處理。於運動前、運動後立即、運動後2小時、運動後4小時及隔日 (24小時) 採集血液樣本。測量循環免疫細胞數量、IL-6、IL-10、TNF-α及PBMCs中的STAT3相關路徑。實驗數據以混合線性模型 (linear-mixed model) 進行統計考驗。結果:總白血球數量於RE後在運動後立即 (RE: 6.79 ± 2.07 ×106/mL; CON: 5.08 ± 1.06 ×106/mL)、運動後2小時 (RE: 7.51 ± 2.61 ×106/mL; CON: 5.59 ± 0.84 ×106/mL) 與運動後4小時 (RE: 7.43 ± 2.32 ×106/mL; CON: 5.86 ± 1.18 ×106/mL) 顯著高於CON (p < 0.05)。嗜中性球數目於RE在運動後2小時 (RE: 5.23 ± 2.77 ×106/mL; CON: 3.05 ± 1.06 ×106/mL) 與運動後4小時 (RE: 4.86 ± 2.5 ×106/mL; CON: 3.27 ± 1.42 ×106/mL) 顯著高於CON (p < 0.05)。淋巴球數目於RE在運動後立即 (RE: 1.89 ± 0.7 ×106/mL; CON: 1.24 ± 0.45 ×106/mL) 顯著高於CON (p < 0.05)。單核球數目於兩種處理間無顯著差異 (p > 0.05)。血漿IL-6濃度於RE在運動後立即 (RE: 1.25 ± 0.65 pg/mL; CON: 0.76 ± 0.41 pg/mL) 與運動後4小時 (RE: 4.31 ± 3.20 pg/mL; CON: 2.21 ± 0.67 pg/mL) 顯著高於CON (p < 0.05)。血漿IL-10濃度於RE在運動後立即 (RE: 1.02 ± 0.29 pg/mL; CON: 0.86 ± 0.26 pg/mL) 顯著高於CON (p < 0.05)。血漿TNF-ɑ濃度於兩種處理間無顯著差異 (p > 0.05)。PBMC細胞質中STAT3蛋白表現量於兩種處理間無顯著差異 (p > 0.05)。PBMCs中磷酸化STAT3α和STAT3β於RE在運動後4小時皆顯著高於CON (p < 0.05)。PBMCs中SOCS3蛋白表現量於RE在運動後立即、運動後2小時、運動後4小時及運動後24小時皆顯著高於CON (p < 0.05)。細胞核/細胞質STAT3蛋白表現量比值於兩種處理間無顯著差異 (p > 0.05)。PBMCs中細胞核SHIP1蛋白表現量於兩種處理間無顯著差異 (p > 0.05)。結論:單次阻力運動誘發IL-6和IL-10抗發炎細胞激素濃度上升以及活化PMBCs中STAT3訊息傳遞路徑。其中,IL-6濃度的上升與PBMCs中的STAT3磷酸化同時發生,可能說明阻力運動後對循環免疫細胞抗發炎效應的可能機制。

Background: Chronic inflammation increases the risk of developing and progressing several diseases. The anti-inflammatory effect of resistance exercise (RE) is mediated by increasing circulating anti-inflammatory cytokines to inhibit inflammatory pathways. However, previous studies mainly focused on changes in inflammation-related cytokines following acute RE. The activation of anti-inflammatory signaling pathways in immune cells after acute RE remains unclear. Purpose: 1) To examine the effect of acute RE on circulating white blood cell (WBC) counts and cytokines in healthy young male, 2) to investigate the impact on the anti-inflammatory signaling pathways within peripheral blood mononuclear cells (PBMCs) in healthy young males. Methods: Sixteen healthy young male completed two randomized crossover conditions (RE: resistance exercise; CON: sedentary control). Blood samples were collected at pre-exercise as well as immediately, 2 h, 4 h, and 24 h post-exercise. Circulating WBC counts, IL-6, IL-10, TNF-α, and STAT3 signaling pathway in PBMCs. Collected data were analyzed using linear-mixed model. Results: WBC counts increased in RE at immediately post-exercise (RE: 6.79 ± 2.07 ×106/mL; CON: 5.08 ± 1.06 ×106/mL), 2 h post-exercise (RE: 7.51 ± 2.61 ×106/mL; CON: 5.59 ± 0.84 ×106/mL), and 4 h post-exercise (RE: 7.43 ± 2.32 ×106/mL; CON: 5.86 ± 1.18 ×106/mL) compare with CON (p < 0.05). Higher neutrophil counts were observed in RE versus CON at 2 h post-exercise (RE: 5.23 ± 2.77 ×106/mL; CON: 3.05 ± 1.06 ×106/mL) and 4 h post-exercise (RE: 4.86 ± 2.5 ×106/mL; CON: 3.27 ± 1.42 ×106/mL; p < 0.05). Lymphocyte counts in RE were significant higher at immediately post-exercise compared with CON (RE: 1.89 ± 0.7 ×106/mL; CON: 1.24 ± 0.45 ×106/mL; p < 0.05). No differences in monocytes counts were observed between conditions (p < 0.05). Plasma IL-6 concentration increased in RE at immediately post-exercise (1.25 ± 0.65 vs. 0.76 ± 0.41 pg/mL) and 4 h post-exercise (4.31 ± 3.20 vs. 2.21 ± 0.67 pg/mL) compared with CON (p < 0.05). Higher plasma IL-10 concentration were observed in RE versus CON at immediately post-exercise (1.02 ± 0.29 vs. 0.86 ± 0.26 pg/mL; p < 0.05). No differences in plasma TNF-ɑ concentration were observed between conditions (p < 0.05). Changes in total STAT3ɑ and STAT3β protein expression in cytoplasmic fractions of PBMCs were not different between conditions (p > 0.05). Phosphorylation of both STAT3ɑ and STAT3β in cytoplasmic fractions of PBMCs were increased in RE compared with CON at 4 h post-exercise (p < 0.05). SOCS3 protein expression in cytoplasmic fractions of PBMCs was greater in RE than CON at immediately post-exercise, 2 h post-exercise, 4 h post-exercise, and 24 h post-exercise (p < 0.05). No differences in both STAT3 and SHIP1 protein expression in nuclear fractions of PBMCs were observed following RE (p > 0.05). Conclusion: Acute RE promotes an increase in circulating WBC and neutrophil counts. In addition, acute RE elevates anti-inflammatory cytokines IL-6 and IL-10 and activating the STAT3 signaling pathway in PBMCs. The increase in IL-6 coincided with the activation of STAT3 signaling in PBMCs, highlighting a potential mechanism by which RE may exert anti-inflammatory actions in circulating immune cells.

第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究假設 2 第四節 名詞操作性定義 3 第五節 研究範圍與限制 4 第六節 研究重要性 4 第貳章 文獻探討 5 第一節 發炎與細胞激素 5 第二節 運動與發炎 6 第三節 單次阻力運動對抗發炎路徑之影響 16 第四節 文章總節 22 第參章 研究方法與步驟 23 第一節 研究對象 23 第二節 實驗時間與地點 23 第三節 實驗流程 23 第四節 測量工具與方法 25 第五節 資料處理及統計分析 32 第肆章 結果 33 第一節 受試者基本資料 33 第二節 單次阻力運動後對白血球計數的影響 33 第三節 單次阻力運動後對血漿細胞激素濃度的影響 37 第四節 單次阻力運動後對PBMCs 中STAT3相關路徑蛋白的影響 40 第伍章 討論 46 第一節 單次阻力運動後對白血球計數的影響 46 第二節 單次阻力運動後對血漿細胞激素濃度的影響 48 第三節 單次阻力運動後對PBMCs中STAT3相關路徑蛋白的影響 50 第四節 結論與建議 52 參考文獻 54 附錄 68 附錄一 68 附錄二 69

Agostinete, R. R., Rossi, F. E., Magalhaes, A. J. B., Rocha, A. P. R., Parmezzani, S. S., Gerosa-Neto, J., Cholewa, J. M., & Lira, F. S. (2016). Immunometabolic Responses after Short and Moderate Rest Intervals to Strength Exercise with and without Similar Total Volume [Original Research]. Front Physiol, 7. https://doi.org/10.3389/fphys.2016.00444

American College of Sports Medicine. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41(3), 687-708.

Aragón-Vela, J., Fontana, L., Casuso, R. A., Plaza-Díaz, J., & R. Huertas, J. (2021). Differential inflammatory response of men and women subjected to an acute resistance exercise. Biomed J, 44(3), 338-345. https://doi.org/https://doi.org/10.1016/j.bj.2020.02.005

Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., Van Rooijen, N., Plonquet, A., Gherardi, R. K., & Chazaud, B. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med, 204(5), 1057-1069.

Bakdash, J. Z., & Marusich, L. R. (2017). Repeated Measures Correlation [Methods]. Front Psychol, 8. https://doi.org/10.3389/fpsyg.2017.00456

Barry, J. C., Shakibakho, S., Durrer, C., Simtchouk, S., Jawanda, K. K., Cheung, S. T., Mui, A. L., & Little, J. P. (2016). Hyporesponsiveness to the anti-inflammatory action of interleukin-10 in type 2 diabetes. Sci Rep, 6(1), 1-9.

Barry, J. C., Simtchouk, S., Durrer, C., Jung, M. E., & Little, J. P. (2017). Short-term exercise training alters leukocyte chemokine receptors in obese adults. Med Sci Sports Exerc, 49(8), 1631-1640.

Benatti, F. B., & Pedersen, B. K. (2015). Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol, 11(2), 86-97. https://doi.org/10.1038/nrrheum.2014.193

Benini, R., Nunes, P. R. P., Orsatti, C. L., Portari, G. V., & Orsatti, F. L. (2015). Influence of sex on cytokines, heat shock protein and oxidative stress markers in response to an acute total body resistance exercise protocol. J Exerc Sci Fit, 13(1), 1-7. https://doi.org/10.1016/j.jesf.2014.10.002

Biddle, S. J. H., & Batterham, A. M. (2015). High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act, 12(1), 95. https://doi.org/10.1186/s12966-015-0254-9

Braun, D. A., Fribourg, M., & Sealfon, S. C. (2013). Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J Biol Chem, 288(5), 2986-2993. https://doi.org/10.1074/jbc.M112.386573

Bruunsgaard, H., Skinhøj, P., Pedersen, A. N., Schroll, M., & Pedersen, B. K. (2000). Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol, 121(2), 255-260. https://doi.org/10.1046/j.1365-2249.2000.01281.x

Brzycki, M. (1993). Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat, 64(1), 88-90.

Buckley, T. M., & Schatzberg, A. F. (2005). On the Interactions of the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Sleep: Normal HPA Axis Activity and Circadian Rhythm, Exemplary Sleep Disorders. The Journal of Clinical Endocrinology & Metabolism, 90(5), 3106-3114. https://doi.org/10.1210/jc.2004-1056

Cabral-Santos, C., Castrillón, C. I. M., Miranda, R. A. T., Monteiro, P. A., Inoue, D. S., Campos, E. Z., Hofmann, P., & Lira, F. S. (2016). Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume [Original Research]. Frontiers in Physiology, 7. https://doi.org/10.3389/fphys.2016.00509

Cabral-Santos, C., Gerosa-Neto, J., Inoue, D. S., Panissa, V. L., Gobbo, L. A., Zagatto, A. M., Campos, E. Z., & Lira, F. S. (2015). Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise. J Sports Sci Med, 14(4), 849-856.

Caldenhoven, E., van Dijk, T. B., Solari, R., Armstrong, J., Raaijmakers, J. A., Lammers, J. W., Koenderman, L., & de Groot, R. P. (1996). STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem, 271(22), 13221-13227. https://doi.org/10.1074/jbc.271.22.13221

Calle, M. C., & Fernandez, M. L. (2010). Effects of resistance training on the inflammatory response. Nutr Res Pract, 4(4), 259-269. https://doi.org/10.4162/nrp.2010.4.4.259

Campbell, J. P., & Turner, J. E. (2018). Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan [Review]. Front Immunol, 9. https://doi.org/10.3389/fimmu.2018.00648

Carlson, L. A., Tighe, S. W., Kenefick, R. W., Dragon, J., Westcott, N. W., & LeClair, R. J. (2011). Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise. Eur J Appl Physiol, 111(12), 2919-2929. https://doi.org/10.1007/s00421-011-1923-2

Carow, B., & Rottenberg, M. E. (2014). SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol, 5, 58. https://doi.org/10.3389/fimmu.2014.00058

Cevey, Á. C., Penas, F. N., Alba Soto, C. D., Mirkin, G. A., & Goren, N. B. (2019). IL-10/STAT3/SOCS3 Axis Is Involved in the Anti-inflammatory Effect of Benznidazole [Original Research]. Front Immunol, 10. https://doi.org/10.3389/fimmu.2019.01267

Chamberlain, T. C., Cheung, S. T., Yoon, J. S. J., Ming-Lum, A., Gardill, B. R., Shakibakho, S., Dzananovic, E., Ban, F., Samiea, A., Jawanda, K., Priatel, J., Krystal, G., Ong, C. J., Cherkasov, A., Andersen, R. J., McKenna, S. A., Van Petegem, F., & Mui, A. L. (2020). Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. iScience, 23(8), 101433. https://doi.org/10.1016/j.isci.2020.101433

Chan, C. S., Ming-Lum, A., Golds, G. B., Lee, S. J., Anderson, R. J., & Mui, A. L. (2012). Interleukin-10 inhibits lipopolysaccharide-induced tumor necrosis factor-α translation through a SHIP1-dependent pathway. J Biol Chem, 287(45), 38020-38027. https://doi.org/10.1074/jbc.M112.348599

Chaplin, D. D. (2010). Overview of the immune response. J Allergy Clin Immunol, 125(2, Supplement 2), S3-S23. https://doi.org/https://doi.org/10.1016/j.jaci.2009.12.980

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204-7218. https://doi.org/10.18632/oncotarget.23208
Cullen, T., Thomas, A. W., Webb, R., & Hughes, M. G. (2016). Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl Physiol Nutr Metab, 41(8), 803-808. https://doi.org/10.1139/apnm-2015-0640 %M 27377137

Dorneles, G. P., Haddad, D. O., Fagundes, V. O., Vargas, B. K., Kloecker, A., Romão, P. R. T., & Peres, A. (2016). High intensity interval exercise decreases IL-8 and enhances the immunomodulatory cytokine interleukin-10 in lean and overweight–obese individuals. Cytokine, 77, 1-9. https://doi.org/https://doi.org/10.1016/j.cyto.2015.10.003

Drummond, M. J., Fry, C. S., Glynn, E. L., Timmerman, K. L., Dickinson, J. M., Walker, D. K., Gundermann, D. M., Volpi, E., & Rasmussen, B. B. (2011). Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol, 111(1), 135-142. https://doi.org/10.1152/japplphysiol.01408.2010

El Kasmi, K. C., Holst, J., Coffre, M., Mielke, L., de Pauw, A., Lhocine, N., Smith, A. M., Rutschman, R., Kaushal, D., Shen, Y., Suda, T., Donnelly, R. P., Myers, M. G., Alexander, W., Vignali, D. A. A., Watowich, S. S., Ernst, M., Hilton, D. J., & Murray, P. J. (2006). General Nature of the STAT3-Activated Anti-Inflammatory Response. J Immunol, 177(11), 7880-7888. https://doi.org/10.4049/jimmunol.177.11.7880

Febbraio, M. A., & Pedersen, B. K. (2002). Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J, 16(11), 1335-1347. https://doi.org/https://doi.org/10.1096/fj.01-0876rev

Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S., & Girardin, S. E. (2007). Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol, 147(2), 227-235. https://doi.org/10.1111/j.1365-2249.2006.03261.x

Fischer, C. P. (2006). Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev, 12, 6-33.

Flynn, M. G., & McFarlin, B. K. (2006). Toll-like receptor 4: link to the anti-inflammatory effects of exercise? Exerc Sport Sci Rev, 34(4), 176-181. https://doi.org/10.1249/01.jes.0000240027.22749.14

Fortunato, A. K., Pontes, W. M., De Souza, D. M. S., Prazeres, J. S. F., Marcucci-Barbosa, L. S., Santos, J. M. M., Veira É, L. M., Bearzoti, E., Pinto, K. M. C., Talvani, A., & Da Silva, A. N. (2018). Strength Training Session Induces Important Changes on Physiological, Immunological, and Inflammatory Biomarkers. J Immunol Res, 2018, 9675216. https://doi.org/10.1155/2018/9675216

Freeman, B. D., & Buchman, T. G. (2001). Interleukin-1 receptor antagonist as therapy for inflammatory disorders. Expert Opin Biol Ther, 1(2), 301-308. https://doi.org/10.1517/14712598.1.2.301

Fulop, T., Witkowski, J. M., Olivieri, F., & Larbi, A. (2018). The integration of inflammaging in age-related diseases. Semin Immunol, 40, 17-35. https://doi.org/10.1016/j.smim.2018.09.003

Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nat Med, 25(12), 1822-1832. https://doi.org/10.1038/s41591-019-0675-0

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., & Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb

Gerosa-Neto, J., Rossi, F. E., Campos, E. Z., Antunes, B. M. M., Cholewa, J. M., & Lira, F. S. (2016). Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part II. J Strength Cond Res, 30(6), 1570-1576. https://doi.org/10.1519/jsc.0000000000001413

Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol, 590(5), 1077-1084. https://doi.org/10.1113/jphysiol.2011.224725

Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol, 11(9), 607-615. https://doi.org/10.1038/nri3041

Graff, R. M., Kunz, H. E., Agha, N. H., Baker, F. L., Laughlin, M., Bigley, A. B., Markofski, M. M., LaVoy, E. C., Katsanis, E., Bond, R. A., Bollard, C. M., & Simpson, R. J. (2018). β(2)-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun, 74, 143-153. https://doi.org/10.1016/j.bbi.2018.08.017

Hackett, D. A., Cobley, S. P., Davies, T. B., Michael, S. W., & Halaki, M. (2017). Accuracy in estimating repetitions to failure during resistance exercise. J Strength Cond Res, 31(8), 2162-2168.

Hillmer, E. J., Zhang, H., Li, H. S., & Watowich, S. S. (2016). STAT3 signaling in immunity. Cytokine Growth Factor Rev, 31, 1-15. https://doi.org/10.1016/j.cytogfr.2016.05.001

Hodes, G. E., Ménard, C., & Russo, S. J. (2016). Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress, 4, 15-22. https://doi.org/10.1016/j.ynstr.2016.03.003

Hojman, P., Brolin, C., Nørgaard-Christensen, N., Dethlefsen, C., Lauenborg, B., Olsen, C. K., Åbom, M. M., Krag, T., Gehl, J., & Pedersen, B. K. (2019). IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. Am J Physiol Endocrinol Metab, 316(5), E940-E947. https://doi.org/10.1152/ajpendo.00414.2018

Hunter, C. A., & Jones, S. A. (2015). IL-6 as a keystone cytokine in health and disease. Nat Immunol, 16(5), 448-457. https://doi.org/10.1038/ni.3153

Hutchins, A. P., Diez, D., & Miranda-Saavedra, D. (2013). The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genomics, 12(6), 489-498. https://doi.org/10.1093/bfgp/elt028

Ihalainen, J., Walker, S., Paulsen, G., Häkkinen, K., Kraemer, W. J., Hämäläinen, M., Vuolteenaho, K., Moilanen, E., & Mero, A. A. (2014). Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. Eur J Appl Physiol, 114(12), 2607-2616. https://doi.org/10.1007/s00421-014-2979-6

Ikeda, S. I., Tamura, Y., Kakehi, S., Sanada, H., Kawamori, R., & Watada, H. (2016). Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle. Biochem Biophys Res Commun, 473(4), 947-952. https://doi.org/10.1016/j.bbrc.2016.03.159

Islam, H., Neudorf, H., Mui, A. L., & Little, J. P. (2021). Interpreting 'anti-inflammatory' cytokine responses to exercise: focus on interleukin-10. J Physiol, 599(23), 5163-5177. https://doi.org/10.1113/jp281356

Islam, H., Tsai, S.-H., Marcotte-Chénard, A., Jackson, G. S., Figueiredo, C., Bosak, J., Moreno-Cabañas, A., & Little, J. P. (2023). Beyond Circulating Cytokines: Impact Of Exercise Intensity On Anti-inflammatory Cytokine Action In Monocytes And Lymphocytes: 2406. Medicine & Science in Sports & Exercise, 55(9S), 802. https://doi.org/10.1249/01.mss.0000987392.71196.c2

Izquierdo, M., Ibañez, J., Calbet, J. A. L., Navarro-Amezqueta, I., González-Izal, M., Idoate, F., Häkkinen, K., Kraemer, W. J., Palacios-Sarrasqueta, M., Almar, M., & Gorostiaga, E. M. (2009). Cytokine and hormone responses to resistance training. Eur J Appl Physiol, 107(4), 397. https://doi.org/10.1007/s00421-009-1139-x

Jankord, R., & Jemiolo, B. (2004). Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc, 36(6), 960-964. https://doi.org/10.1249/01.mss.0000128186.09416.18

Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., Pedersen, B. K., & Neufer, P. D. (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15(14), 2748-2750. https://doi.org/10.1096/fj.01-0507fje

Kistner, T. M., Pedersen, B. K., & Lieberman, D. E. (2022). Interleukin 6 as an energy allocator in muscle tissue. Nat Metab, 4(2), 170-179. https://doi.org/10.1038/s42255-022-00538-4

Krüger, K., & Mooren, F. C. (2014). Exercise-induced leukocyte apoptosis. Exerc Immunol Rev, 20, 117-134.

Lei, W., Liu, D., Sun, M., Lu, C., Yang, W., Wang, C., Cheng, Y., Zhang, M., Shen, M., Yang, Z., Chen, Y., Deng, C., & Yang, Y. (2021). Targeting STAT3: A crucial modulator of sepsis. J Cell Physiol, 236(11), 7814-7831. https://doi.org/https://doi.org/10.1002/jcp.30394

Lippi, G., Lima-Oliveira, G., Salvagno, G. L., Montagnana, M., Gelati, M., Picheth, G., Duarte, A. J., Franchini, M., & Guidi, G. C. (2010). Influence of a light meal on routine haematological tests. Blood Transfus, 8(2), 94-99. https://doi.org/10.2450/2009.0142-09

Lira, F. S., Conrado de Freitas, M., Gerosa-Neto, J., Cholewa, J. M., & Rossi, F. E. (2020). Comparison Between Full-Body vs. Split-Body Resistance Exercise on the Brain-Derived Neurotrophic Factor and Immunometabolic Response. J Strength Cond Res, 34(11), 3094-3102. https://doi.org/10.1519/jsc.0000000000002653

Maritano, D., Sugrue, M. L., Tininini, S., Dewilde, S., Strobl, B., Fu, X., Murray-Tait, V., Chiarle, R., & Poli, V. (2004). The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol, 5(4), 401-409. https://doi.org/10.1038/ni1052

Markworth, J. F., D'Souza, R. F., Aasen, K. M. M., Mitchell, S. M., Durainayagam, B. R., Sinclair, A. J., Peake, J. M., Egner, I. M., Raastad, T., Cameron-Smith, D., & Mitchell, C. J. (2018). Arachidonic acid supplementation transiently augments the acute inflammatory response to resistance exercise in trained men. J Appl Physiol, 125(2), 271-286. https://doi.org/10.1152/japplphysiol.00169.2018

Marusich, L. R., & Bakdash, J. Z. (2021). rmcorrShiny: A web and standalone application for repeated measures correlation. F1000Res, 10, 697. https://doi.org/10.12688/f1000research.55027.2

Maynard, C. L., & Weaver, C. T. (2008). Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev, 226, 219-233. https://doi.org/10.1111/j.1600-065X.2008.00711.x

McArdle, M., Finucane, O., Connaughton, R., McMorrow, A., & Roche, H. (2013). Mechanisms of Obesity-Induced Inflammation and Insulin Resistance: Insights into the Emerging Role of Nutritional Strategies [Review]. Front Endocrinol, 4. https://doi.org/10.3389/fendo.2013.00052

Melillo, J. A., Song, L., Bhagat, G., Blazquez, A. B., Plumlee, C. R., Lee, C., Berin, C., Reizis, B., & Schindler, C. (2010). Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol, 184(5), 2638-2645. https://doi.org/10.4049/jimmunol.0902960

Mooren, F. C., Völker, K., Klocke, R., Nikol, S., Waltenberger, J., & Krüger, K. (2012). Exercise delays neutrophil apoptosis by a G-CSF-dependent mechanism. J Appl Physiol, 113(7), 1082-1090. https://doi.org/10.1152/japplphysiol.00797.2012

Moresi, V., Adamo, S., & Berghella, L. (2019). The JAK/STAT Pathway in Skeletal Muscle Pathophysiology [Mini Review]. Front Physiol, 10. https://doi.org/10.3389/fphys.2019.00500

Muñoz-Cánoves, P., Scheele, C., Pedersen, B. K., & Serrano, A. L. (2013). Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280(17), 4131-4148. https://doi.org/10.1111/febs.12338

Murray, P. J. (2006). Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol, 6(4), 379-386. https://doi.org/10.1016/j.coph.2006.01.010

Nair, S., Pandey, A. D., & Mukhopadhyay, S. (2011). The PPE18 Protein of Mycobacterium tuberculosis Inhibits NF-κB/rel–Mediated Proinflammatory Cytokine Production by Upregulating and Phosphorylating Suppressor of Cytokine Signaling 3 Protein. J Immunol, 186(9), 5413-5424. https://doi.org/10.4049/jimmunol.1000773

Nathan, C., & Ding, A. (2010). Nonresolving Inflammation. Cell, 140(6), 871-882. https://doi.org/https://doi.org/10.1016/j.cell.2010.02.029

Nieman, D. C., Konrad, M., Henson, D. A., Kennerly, K., Shanely, R. A., & Wallner-Liebmann, S. J. (2012). Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res, 32(1), 12-17. https://doi.org/10.1089/jir.2011.0038

Nieman, D. C., Luo, B., Dréau, D., Henson, D. A., Shanely, R. A., Dew, D., & Meaney, M. P. (2014). Immune and inflammation responses to a 3-day period of intensified running versus cycling. Brain Behav Immun, 39, 180-185. https://doi.org/https://doi.org/10.1016/j.bbi.2013.09.004

Niemand, C., Nimmesgern, A., Haan, S., Fischer, P., Schaper, F., Rossaint, R., Heinrich, P. C., & Müller-Newen, G. (2003). Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol, 170(6), 3263-3272. https://doi.org/10.4049/jimmunol.170.6.3263

Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol, 515 ( Pt 1)(Pt 1), 287-291. https://doi.org/10.1111/j.1469-7793.1999.287ad.x

Peake, J. (2020). Interrelations Between Acute and Chronic Exercise Stress and the Immune and Endocrine Systems. In A. C. Hackney & N. W. Constantini (Eds.), Endocrinology of Physical Activity and Sport (pp. 249-266). Springer International Publishing. https://doi.org/10.1007/978-3-030-33376-8_15

Peake, J. M., Della Gatta, P., Suzuki, K., & Nieman, D. C. (2015). Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev, 21, 8-25.

Peake, J. M., Neubauer, O., Walsh, N. P., & Simpson, R. J. (2017). Recovery of the immune system after exercise. J Appl Physiol, 122(5), 1077-1087. https://doi.org/10.1152/japplphysiol.00622.2016

Peake, J. M., Suzuki, K., Hordern, M., Wilson, G., Nosaka, K., & Coombes, J. S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol, 95(5-6), 514-521. https://doi.org/10.1007/s00421-005-0035-2

Pedersen, B. K. (2011). Muscles and their myokines. J Exp Biol, 214(Pt 2), 337-346. https://doi.org/10.1242/jeb.048074

Pedersen, B. K. (2017). Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest, 47(8), 600-611. https://doi.org/https://doi.org/10.1111/eci.12781

Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev, 88(4), 1379-1406. https://doi.org/10.1152/physrev.90100.2007

Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the Immune System: Regulation, Integration, and Adaptation. Physiol Rev, 80(3), 1055-1081. https://doi.org/10.1152/physrev.2000.80.3.1055

Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports, 25(S3), 1-72. https://doi.org/https://doi.org/10.1111/sms.12581
Pereira, G. B., Tibana, R. A., Navalta, J., Sousa, N. M. F., Córdova, C., Souza, V. C., Nóbrega, O. T., Prestes, J., & Perez, S. E. A. (2013). Acute effects of resistance training on cytokines and osteoprotegerin in women with metabolic syndrome. Clin Physiol Funct Imaging, 33(2), 122-130. https://doi.org/https://doi.org/10.1111/cpf.12004

Pérez-Schindler, J., Esparza, M. C., McKendry, J., Breen, L., Philp, A., & Schenk, S. (2017). Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3. Am J Physiol Cell Physiol, 313(3), C257-c261. https://doi.org/10.1152/ajpcell.00100.2017

Petersen, A. M. W., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. J Appl Physiol, 98(4), 1154-1162. https://doi.org/10.1152/japplphysiol.00164.2004

Phillips, M. D., Mitchell, J. B., Currie-Elolf, L. M., Yellott, R. C., & Hubing, K. A. (2010). Influence of Commonly Employed Resistance Exercise Protocols on Circulating IL-6 and Indices of Insulin Sensitivity. J Strength Cond Res, 24(4), 1091-1101. https://doi.org/10.1519/JSC.0b013e3181cc2212

Pischon, T., Hankinson, S. E., Hotamisligil, G. S., Rifai, N., & Rimm, E. B. (2003). Leisure-Time Physical Activity and Reduced Plasma Levels of Obesity-Related Inflammatory Markers. Obes Res, 11(9), 1055-1064. https://doi.org/https://doi.org/10.1038/oby.2003.145

Popko, K., Gorska, E., Stelmaszczyk-Emmel, A., Plywaczewski, R., Stoklosa, A., Gorecka, D., Pyrzak, B., & Demkow, U. (2010). Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res, 15(2), 120. https://doi.org/10.1186/2047-783X-15-S2-120

Ratter, J. M., Rooijackers, H. M. M., Hooiveld, G. J., Hijmans, A. G. M., de Galan, B. E., Tack, C. J., & Stienstra, R. (2018). In vitro and in vivo Effects of Lactate on Metabolism and Cytokine Production of Human Primary PBMCs and Monocytes [Original Research]. Front immunol, 9. https://doi.org/10.3389/fimmu.2018.02564

Reynolds, J. M., Gordon, T. J., & Robergs, R. A. (2006). Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res, 20(3), 584-592.

Rottenberg, M., & Carow, B. (2014). SOCS3, a Major Regulator of Infection and Inflammation [Review]. Front Immunol, 5. https://doi.org/10.3389/fimmu.2014.00058
Sabat, R., Grütz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K., & Geginat, J. (2010). Biology of interleukin-10. Cytokine Growth Factor Rev, 21(5), 331-344. https://doi.org/https://doi.org/10.1016/j.cytogfr.2010.09.002

Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, 1813(5), 878-888. https://doi.org/10.1016/j.bbamcr.2011.01.034

Schlagheck, M. L., Walzik, D., Joisten, N., Koliamitra, C., Hardt, L., Metcalfe, A. J., Wahl, P., Bloch, W., Schenk, A., & Zimmer, P. (2020). Cellular immune response to acute exercise: Comparison of endurance and resistance exercise. Eur J Haematol, 105(1), 75-84. https://doi.org/https://doi.org/10.1111/ejh.13412

Scott, J. P. R., Sale, C., Greeves, J. P., Casey, A., Dutton, J., & Fraser, W. D. (2011). Effect of Exercise Intensity on the Cytokine Response to an Acute Bout of Running. Med Sci Sports Exerc, 43(12), 2297-2306. https://doi.org/10.1249/MSS.0b013e31822113a9

Senna, G. W., Dantas, E. H. M., Scudese, E., Brandão, P. P., Lira, V. A., Baffi, M., Ribeiro, L. C. P., Simão, R., Thomas, E., & Bianco, A. (2022). Higher Muscle Damage Triggered by Shorter Inter-Set Rest Periods in Volume-Equated Resistance Exercise [Original Research]. Front Physiol, 13. https://doi.org/10.3389/fphys.2022.827847

Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M., & Muñoz-Cánoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab, 7(1), 33-44.

Sherwood, E. R., & Toliver-Kinsky, T. (2004). Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol, 18(3), 385-405. https://doi.org/https://doi.org/10.1016/j.bpa.2003.12.002

Simpson, R. J., Boßlau, T. K., Weyh, C., Niemiro, G. M., Batatinha, H., Smith, K. A., & Krüger, K. (2021). Exercise and adrenergic regulation of immunity. Brain Behav Immun, 97, 303-318. https://doi.org/https://doi.org/10.1016/j.bbi.2021.07.010

Simpson, R. J., Kunz, H., Agha, N., & Graff, R. (2015). Chapter Fifteen - Exercise and the Regulation of Immune Functions. In C. Bouchard (Ed.), Prog Mol Biol Transl Sci (Vol. 135, pp. 355-380). Academic Press. https://doi.org/https://doi.org/10.1016/bs.pmbts.2015.08.001

Sly, L. M., Ho, V., Antignano, F., Ruschmann, J., Hamilton, M., Lam, V., Rauh, M. J., & Krystal, G. (2007). The role of SHIP in macrophages. FBL, 12(8), 2836-2848. https://doi.org/10.2741/2276

Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M., & Pedersen, B. K. (2003). Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J, 17(8), 884-886. https://doi.org/10.1096/fj.02-0670fje

Steensberg, A., Febbraio, M. A., Osada, T., Schjerling, P., van Hall, G., Saltin, B., & Pedersen, B. K. (2001). Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol, 537(Pt 2), 633-639. https://doi.org/10.1111/j.1469-7793.2001.00633.x

Steensberg, A., Fischer, C. P., Keller, C., Møller, K., & Pedersen, B. K. (2003). IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab, 285(2), E433-E437. https://doi.org/10.1152/ajpendo.00074.2003

Stowe, R. P., Peek, M. K., Cutchin, M. P., & Goodwin, J. S. (2010). Plasma cytokine levels in a population-based study: relation to age and ethnicity. J Gerontol A Biol Sci Med Sci, 65(4), 429-433. https://doi.org/10.1093/gerona/glp198

Takeda, K., Clausen, B. E., Kaisho, T., Tsujimura, T., Terada, N., Förster, I., & Akira, S. (1999). Enhanced Th1 Activity and Development of Chronic Enterocolitis in Mice Devoid of Stat3 in Macrophages and Neutrophils. Immunity, 10(1), 39-49. https://doi.org/https://doi.org/10.1016/S1074-7613(00)80005-9

Trenerry, M. K., Carey, K. A., Ward, A. C., & Cameron-Smith, D. (2007). STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol (1985), 102(4), 1483-1489. https://doi.org/10.1152/japplphysiol.01147.2006

Trenerry, M. K., Carey, K. A., Ward, A. C., Farnfield, M. M., & Cameron-Smith, D. (2008). Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res, 11(4), 717-724. https://doi.org/10.1089/rej.2007.0643

Trenerry, M. K., Della Gatta, P. A., Larsen, A. E., Garnham, A. P., & Cameron-Smith, D. (2011). Impact of resistance exercise training on interleukin-6 and JAK/STAT in young men. Muscle Nerve, 43(3), 385-392. https://doi.org/10.1002/mus.21875

van de Vyver, M., Engelbrecht, L., Smith, C., & Myburgh, K. H. (2016). Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports, 26(6), 638-647. https://doi.org/https://doi.org/10.1111/sms.12497

van de Vyver, M., & Myburgh, K. H. (2014). Variable inflammation and intramuscular STAT3 phosphorylation and myeloperoxidase levels after downhill running. Scand J Med Sci Sports, 24(5), e360-371. https://doi.org/10.1111/sms.12164

Wadley, A. J., Chen, Y.-W., Lip, G. Y. H., Fisher, J. P., & Aldred, S. (2016). Low volume–high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J Sports Sci, 34(1), 1-9. https://doi.org/10.1080/02640414.2015.1035666

Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., Fleshner, M., Green, C., Pedersen, B. K., Hoffman-Goetz, L., Rogers, C. J., Northoff, H., Abbasi, A., & Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exerc Immunol Rev, 17, 6-63.

Williams, L., Bradley, L., Smith, A., & Foxwell, B. (2004). Signal Transducer and Activator of Transcription 3 Is the Dominant Mediator of the Anti-Inflammatory Effects of IL-10 in Human Macrophages. J Immunol, 172(1), 567. https://doi.org/10.4049/jimmunol.172.1.567

Wueest, S., Item, F., Boyle, C. N., Jirkof, P., Cesarovic, N., Ellingsgaard, H., Böni-Schnetzler, M., Timper, K., Arras, M., Donath, M. Y., Lutz, T. A., Schoenle, E. J., & Konrad, D. (2014). Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306(11), R861-R867. https://doi.org/10.1152/ajpregu.00533.2013
Zhang, J. M., & An, J. (2007). Cytokines, inflammation, and pain. Int Anesthesiol Clin, 45(2), 27-37. https://doi.org/10.1097/AIA.0b013e318034194e

Zimmers, T. A., Fishel, M. L., & Bonetto, A. (2016). STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol, 54, 28-41. https://doi.org/https://doi.org/10.1016/j.semcdb.2016.02.009

無法下載圖示 電子全文延後公開
2028/12/06
QR CODE