研究生: |
郭心春 Kuo, Shin-Chun |
---|---|
論文名稱: |
高穿透率高品質因子可切換太赫茲雙層超表面 Highly Transmissive High Quality-Factor Switchable Terahertz Bilayer Metasurfaces |
指導教授: |
張俊傑
Chang, Chun-Chieh |
口試委員: |
楊斯博
Yang, Zu-Po 李亞儒 Lee, Ya-Ju 張俊傑 Chang, Chun-Chieh |
口試日期: | 2021/08/23 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 太赫茲超表面 、太赫茲帶通濾波器 、太赫茲光調制器 |
英文關鍵詞: | terahertz metasurface, terahertz bandpass filter, terahertz modulator |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101286 |
論文種類: | 學術論文 |
相關次數: | 點閱:93 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於設計同時具有高穿透率與高品質因子,且體積微小並具有高度整合的太赫茲雙層超表面元件。首先,利用全波段電磁模擬,並利用可撓曲的Kapton及SU8聚合物為基板,設計可撓曲高穿透的Au / SU8 / Au的太赫茲超表面結構。根據改變兩層Au超表面的色散關係以及SU8介電質層厚度,達成高穿透率所需滿足的相位關係。此外,改變超表面的幾何設計可使元件的操作頻率帶寬由單一帶寬調整為雙帶寬或者寬帶寬。第二,我們發現藉由改變兩層超表面各自的共振性質與介電質層的光學特性,除了實現高穿透率以外,可進而操控穿透頻譜的線型與線寬。因此,以操作頻率為單一帶寬的超表面作為基礎,我們成功設計出具高穿透率,且高品質因子的太赫茲雙層超表面。第三,我們將相變材料整合在太赫茲雙層超表面結構中,並藉由改變溫度或外加電壓使相變材料發生相變,進而實現主動切換超表面的穿透性質,使其具有調制太赫茲光的能力。本論文中所設計的太赫茲雙層超表面具有廣泛應用,可作為未來高速太赫茲無線通訊中所需的窄頻帶帶通濾波器以及太赫茲光調制器,或者作為具有高靈敏度的生物與化學分子感測器,亦可應用於研究低維度半導體量子結構中光物質強耦合的物理現象。
This thesis is focused on the design of novel terahertz (THz) bilayer metasurfaces, featuring high transmission, high quality factor, small footprint, and facile integrability. First, we design using full-wave simulations highly transmissive Au/SU8/Au flexible THz bilayer metasurfaces based on Kapton and SU8 polymer substrate. The phase requirement for high transmission is satisfied by tailoring the dispersion of both Au metasurfaces and the thickness of the SU8 dielectric layer. The THz bilayer metasurfaces can operate for single band, dual-band, and broadband through changing the metasurface design. Second, we discover that both the line shape and the line width of the transmission passband of the THz bilayer metasurfaces can be controlled and manipulated by altering the resonant characteristics of two metasurface layers and the optical properties of the dielectric spacer. We thus successfully design a new class of THz bilayer metasurfaces, possessing simultaneously a high transmission efficiency and a high quality factor. Third, we integrate phase change materials into the THz bilayer metausrface structure to realize actively switchable transmission through phase transition induced by temperature change or external bias, suitable for THz light modulation. The designed THz bilayer metasurfaces can be of use for a wide range of practical applications, including high-speed wireless communications, highly sensitive biological and chemical detection, and the investigation of strong light-matter coupling in low-dimensional semiconductor quantum structures.
[1-1] C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photon. 5 523 (2011).
[1-2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn.,47(11), 2075 (1999).
[1-3] R. A. Shelby, D. R. Smith, and S. Schultz,” Experimental verification of a negative index of refraction,” Science, 292(6), 77 (2001).
[1-4] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro,” Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, 334(21), 333 (2011).
[1-5] N. Yu, and F. Capasso,” Flat optics with designer metasurfaces,” Science, 13, 139 (2014).
[1-6] S. Chen, Y. Zhang, Z. Li, H. Chen, and J. Tien,” Empowered layer effects and prominent properties in few-layer metasurfaces,” Adv. Opt. Mater., 7(14), 1801477 (2019).
[1-7] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,”, Nat. Mater., 1, 26 (2002).
[1-8] M. Hagyo, “Development and future prospects of terahertz technology,” Jpn. J. Appl. Phys., 54, 120101 (2015).
[2-1] Rubens, H. and E. F. Nichols (1897). "Heat rays of great wave length." Physical Review (Series I) 4(4): 314.
[2-2] Fleming, J. and J. Chamberlain (1974). "High resolution far infrared Fourier transform spectrometry using Michelson interferometers with and without collimation." Infrared Physics 14(4): 277-292.
[2-3] Siegel, P. H. (2002). "Terahertz technology." IEEE Transactions on microwave theory and techniques 50(3): 910-928.
[2-4] Huang, Yi, et al. "Terahertz photoconductive antenna efficiency." 2011 International Workshop on Antenna Technology (iWAT). IEEE, 2011.
[2-5] Fattinger, C. and D. Grischkowsky (1989). "Terahertz beams." Applied Physics Letters 54(6): 490-492.
[2-6] Zhang, J., et al. (2004). "Terahertz pulse generation and detection with LT-GaAs photoconductive antenna." IEE Proceedings-Optoelectronics 151(2): 98-101.
[2-7] Fülöp, J., et al. (2010). "Design of high-energy terahertz sources based on optical rectification." Optics express 18(12): 12311-12327.
[2-8] Lee, Y.-S. (2009). Principles of terahertz science and technology, Springer Science & Business Media.
[2-9] Burford, N. M. and M. O. El-Shenawee (2017). "Review of terahertz photoconductive antenna technology." Optical Engineering 56(1): 010901.
[2-10] Walser, R. M. (2001). “Electromagnetic metamaterials.” Complex Mediums II: beyond linear isotropic dielectrics, International Society for Optics and Photonics.
[2-11] Lee, S., et al. (2020). "Metamaterials for enhanced optical responses and their application to active control of terahertz waves." Advanced Materials 32(35): 2000250.
[3-1] Chen, H.-T., et al. (2010). "Antireflection coating using metamaterials and identification of its mechanism." Physical review letters 105(7): 073901.
[3-2] Sun, J., et al. (2018). "Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic." Scientific reports 8(1): 1-10.
[3-3] Huang, L., et al. (2017). "Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection." ACS Photonics 4(9): 2111-2116.
[3-4] Ghalichechian, N. and K. Sertel (2014). "Permittivity and loss characterization of SU-8 films for mmW and terahertz applications." IEEE Antennas and Wireless Propagation Letters 14: 723-726.
[3-5] Cunningham, P. D., et al. (2011). "Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials." Journal of applied physics 109(4): 043505-043505-043505.
[3-6] Tao, H., et al. (2008). "Terahertz metamaterials on free-standing highly-flexible polyimide substrates." Journal of Physics D: Applied Physics 41(23): 232004.
[4-1] Lu, M., et al. (2011). "Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures." Optics letters 36(7): 1071-1073.
[4-2] Porterfield, D. W., et al. (1994). "Resonant metal-mesh bandpass filters for the far infrared." Applied Optics 33(25): 6046-6052.
[4-3] Song, S., et al. (2014). "Narrow-linewidth and high-transmission terahertz bandpass filtering by metallic gratings." IEEE Transactions on Terahertz Science and Technology 5(1): 131-136.
[4-4] Lee, J., et al. (2006). "Shape resonance omni-directional terahertz filters with near-unity transmittance." Optics express 14(3): 1253-1259.
[4-5] Chang, C.-C., et al. (2018). "Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures." APL Photonics 3(5).
[4-6] Dai, J., et al. (2004). "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon." JOSA B 21(7): 1379-1386.
[4-7] Gong, Z., et al. (2021). "Phase change materials in photonic devices." Journal of applied physics 129(3): 030902.
[4-8] Wang, L., et al. (2019). "A Review of THz Modulators with Dynamic Tunable Metasurfaces." Nanomaterials (Basel) 9(7).